Powerful bacterial immune response defined by new study

February 6, 2014, UC Davis

T-cells, the elite guard of the immune system in humans and other mammals, ignore normal biologic protocol and swing into high gear when attacked by certain fast-moving bacteria, reports a team of researchers led by a UC Davis immunologist.

The description of this previously undefined immune pathway provides information vital for designing vaccines and medicines to prevent or treat deadly infectious diseases caused by bacteria such as Salmonella and Chlamydia. The results from this recent mouse-based study will be reported online Feb. 6 in the journal Immunity.

"Our study shows that the body's functions very differently when it faces a rapidly growing pathogen like Salmonella or Chlamydia," said immunologist Stephen McSorley, an associate professor at UC Davis' Center for Comparative Medicine, which investigates diseases that afflict both humans and animals.

"The strict rules that normally govern T-cell activation are relaxed so that the host animal has the best possible chance of a maximal response and ultimately staying alive," he said.

T-cells, which belong to a group of white blood cells called lymphocytes, normally respond defensively to the presence of substances known as antigens, which are produced by invading bacteria and viruses. It's widely known that T-cells launch an immune defense when they recognize specific antigens.

However in this study, the researchers demonstrated in the mouse that certain T-cells don't require the presence of specific antigens to launch an effective . During fast-moving Salmonella and Chlamydia infections, a cascade of other antimicrobial interactions occur that trigger these T-cells to respond defensively to the bacterial attacks, even without the presence of specific antigens.

The researchers also showed that when this defensive pathway was disrupted during Salmonella infection, the mice had greater difficulty getting rid of the bacterial disease.

The researchers note that further study is needed to determine if this newly defined antimicrobial pathway also can provide protection against co-infections by multiple disease-causing microbes.

Explore further: Discovery paves way for salmonella vaccine

Related Stories

Discovery paves way for salmonella vaccine

February 13, 2012
(Medical Xpress) -- An international research team led by a University of California, Davis, immunologist has taken an important step toward an effective vaccine against salmonella, a group of increasingly antibiotic-resistant ...

Typhoid Fever: A race against time

January 16, 2014
The life-threatening disease typhoid fever results from the ongoing battle between the bacterial pathogen Salmonella and the immune cells of the body. Prof. Dirk Bumann's research group at the Biozentrum of the University ...

Salmonella jams signals from bacteria-fighting mast cells

December 12, 2013
A protein in Salmonella inactivates mast cells—critical players in the body's fight against bacteria and other pathogens—rendering them unable to protect against bacterial spread in the body, according to researchers ...

Uncovering the molecular mechanisms behind immune system activation could help in future gene therapies

January 29, 2014
The ability to recognize antigens from invading microbes and damaged host cells allows the human body to trigger powerful immune responses. A particular group of white cells, known as gamma delta T cells (γδ T cells), is ...

Salmonella infection mitigates asthma

January 23, 2014
Researchers from Germany have identified the mechanism by which Salmonella infections can reduce the incidence of asthma in mice. The research, which appears ahead of print in the journal Infection and Immunity, opens up ...

Early activation of immune response could lead to better vaccines

August 30, 2012
Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a new "first response" mechanism that the immune system uses to respond to infection. The findings challenge the current understanding ...

Recommended for you

Novel genomic tools provide new insight into human immune system

January 19, 2018
When the body is under attack from pathogens, the immune system marshals a diverse collection of immune cells to work together in a tightly orchestrated process and defend the host against the intruders. For many decades, ...

Genomics reveals key macrophages' involvement in systemic sclerosis

January 18, 2018
A new international study has made an important discovery about the key role of macrophages, a type of immune cell, in systemic sclerosis (SSc), a chronic autoimmune disease which currently has no cure.

First vaccine developed against grass pollen allergy

January 18, 2018
Around 400 million people worldwide suffer in some form or other from a grass pollen allergy (rhinitis), with the usual symptoms of runny nose, cough and severe breathing problems. In collaboration with the Viennese firm ...

Researchers discover key driver of atopic dermatitis

January 17, 2018
Severe eczema, also known as atopic dermatitis, is a chronic inflammatory skin condition that is driven by an allergic reaction. In their latest study, researchers at La Jolla Institute reveal an important player that promotes ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.