Researchers pinpoint protein associated with canine hereditary ataxia

February 6, 2014

Researchers from North Carolina State University have found a link between a mutation in a gene called RAB 24 and an inherited neurodegenerative disease in Old English sheepdogs and Gordon setters. The findings may help further understanding of neurodegenerative diseases and identify new treatments for both canine and human sufferers.

Hereditary ataxias are an important group of inherited in people. This group of diseases is the third most common neurodegenerative movement disorder after Parkinson's and Huntington's diseases.

In people with hereditary ataxia, neurons in the cerebellum that control movement begin to die, causing a gradual loss of coordination. Hereditary ataxias are also recognized in certain breeds of dog, including the Old English sheepdog and the Gordon setter.

NC State neurologist Natasha Olby and a team of researchers from the National Institute on Aging and the Broad Institute of MIT and Harvard looked at 630 Old English sheepdogs and mapped ataxia genetically in the families of affected animals. Eventually they mapped the disease to a gene, RAB 24, located on chromosome 4. A mutation in RAB 24 was closely associated with development of the disease, and on screening of affected dogs of other breeds, the identical mutation was found in Gordon setters, providing additional evidence that this mutation is important.

"Rab 24 is a protein that is believed to be important to the process of autophagy – which is how cells cleanse themselves of waste," Olby says. "We know that autophagy and neurodegeneration are connected, so pinpointing this protein is important to our understanding of the disease process."

"We have not yet proven that this mutation causes neurodegeneration; it could simply be a very good marker for the disease," Olby says. "Our next step will be to determine exactly how the mutation affects the protein Rab 24 and its function and to determine whether this results in neuron death. This gene will also be investigated in humans with hereditary ataxia."

Explore further: Aging brains need 'chaperone' proteins

More information: "Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters is Associated with a Defect in the Autophagy Gene encoding RAB24." PLOS Genetics, 2014.

Abstract
Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia.

Related Stories

Aging brains need 'chaperone' proteins

January 30, 2014
(Medical Xpress)—The word "chaperone" refers to an adult who keeps teenagers from acting up at a dance or overnight trip. It also describes a type of protein that can guard the brain against its own troublemakers: misfolded ...

New cerebellar ataxia gene identified in dogs

June 18, 2012
Researchers at the University of Helsinki and the Folkhälsan Research Center, Finland, have identified the genetic cause of early-onset progressive cerebellar degeneration the Finnish Hound dog breed. The study, led ...

Fruit flies reveal normal function of a gene mutated in spinocerebellar ataxia type 7

January 31, 2014
Disruptive clumps of mutated protein are often blamed for clogging cells and interfering with brain function in patients with the neurodegenerative diseases known as spinocerebellar ataxias. But a new study in fruit flies ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.