Research uncovers how pesticides increase risk for Parkinson's disease

February 3, 2014, University of California, Los Angeles
UCLA researchers uncover how pesticides increase risk for Parkinson's disease
New research looks at the relationship between pesticides and Parkinson's. Credit: UCLA

Previous studies have shown the certain pesticides can increase the risk for developing Parkinson's disease. Now, UCLA researchers have now found that the strength of that risk depends on an individual's genetic makeup, which in the most pesticide-exposed populations could increase the chances of developing the debilitating disease by two- to six-fold.

In a previous study published January 2013 in the Proceedings of the National Academy of Sciences, the UCLA research team discovered a link between Parkinson's and the pesticide benomyl, a fungicide that has been banned by the U.S. Environmental Protection Agency. That study found that benomyl inhibited an enzyme called aldehyde dehydrogenase (ALDH), which converts aldehydes highly toxic to dopamine cells into less toxic agents, and therefore contributed to the development of Parkinson's.

In this study, UCLA researchers tested a number of other and found 11 that also inhibit ALDH and increase the risk of Parkinson's, and at much lower levels than those at which they are currently being used, said study lead author Jeff Bronstein, a professor of neurology and director of movement disorders at UCLA.

Bronstein said the team also found that people with a common genetic variant of the ALDH2 gene are particularly sensitive to the effects of ALDH-inhibiting pesticides, and were two to six times more likely to develop Parkinson's than those without the variant when exposed to these pesticides.

The results of the epidemiological study appear Feb. 5, 2014 in the online issue of Neurology, the medical journal of the American Academy of Neurology.

"We were very surprised that so many pesticides inhibited ALDH and at quite low concentrations, concentrations that were way below what was needed for the pesticides to do their job," Bronstein said. "These pesticides are pretty ubiquitous, and can be found on our food supply and are used in parks and golf courses and in pest control inside buildings and homes. So this significantly broadens the number of people at risk."

The study compared 360 patients with Parkinson's in three agriculture heavy Central California counties to 816 people from the same area who did not have Parkinson's. Researchers focused their analyses on individuals with ambient exposures to pesticides at work and at home, using information from the California Department of Pesticide Regulation.

In the previous PNAS study, Bronstein and his team determined the mechanism that leads to increased risk. Exposure to pesticides starts a cascade of cellular events, preventing ALDH from keeping a lid on DOPAL, a toxin that naturally occurs in the brain. When ALDH does not detoxify DOPAL sufficiently, it accumulates, damages neurons and increases an individual's risk of developing Parkinson's.

"ALDH inhibition appears to be an important mechanism by which these environmental toxins contribute to Parkinson's pathogenesis, especially in genetically vulnerable individuals," said study author Beate Ritz, a professor of epidemiology at the Fielding School of Public Health at UCLA. "This suggests several potential interventions to reduce Parkinson's occurrence or to slow its progression."

In this study, the research team developed a lab test to determine which pesticides inhibited ALDH. Then the researchers found that those participants in the epidemiologic study with a genetic variant in the ALDH gene were at increased risk of Parkinson's when exposed to these pesticides. Just having the variant alone, however, did not increase risk of the disease, Bronstein said.

"This report provides evidence for the relevance of ALDH inhibition in Parkinson's disease pathogenesis, identifies pesticides that should be avoided to reduce the risk of developing Parkinson's disease and suggests that therapies modulating ALDH enzyme activity or otherwise eliminating toxic aldehydes should be developed and tested to potentially reduce Parkinson's disease occurrence or slow its progression particularly for patients exposed to pesticides," the study states.

Explore further: Pesticides and Parkinson's: Researchers uncover further proof of a link

Related Stories

Pesticides and Parkinson's: Researchers uncover further proof of a link

January 4, 2013
(Medical Xpress)—For several years, neurologists at UCLA have been building a case that a link exists between pesticides and Parkinson's disease. To date, paraquat, maneb and ziram—common chemicals sprayed in California's ...

Investigating the link between Parkinson's and pesticides

December 4, 2013
In a seemingly simple experiment, a scientist exposes rats to a certain pesticide over several days, and the rodents start showing symptoms remarkably similar to those seen in Parkinson's patients. But the scientific search ...

Head injury + pesticide exposure = Triple the risk of Parkinson's disease

November 12, 2012
A new study shows that people who have had a head injury and have lived or worked near areas where the pesticide paraquat was used may be three times more likely to develop Parkinson's disease. The study is published in the ...

High risk of Parkinson's disease for people exposed to pesticides near workplace

May 26, 2011
In April 2009, researchers at UCLA announced they had discovered a link between Parkinson's disease and two chemicals commonly sprayed on crops to fight pests.

Genetic mutation increases risk of Parkinson's disease from pesticides

November 27, 2013
A team of researchers has brought new clarity to the picture of how gene-environmental interactions can kill nerve cells that make dopamine. Dopamine is the neurotransmitter that sends messages to the part of the brain that ...

Recommended for you

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

New brainstem changes identified in Parkinson's disease

January 4, 2018
A pioneering study has found that patients with Parkinson's disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Caffeine level in blood may help diagnose people with Parkinson's disease

January 3, 2018
Testing the level of caffeine in the blood may provide a simple way to aid the diagnosis of Parkinson's disease, according to a study published in the January 3, 2018, online issue of Neurology, the medical journal of the ...

Researchers shed light on why exercise slows progression of Parkinson's disease

December 22, 2017
While vigorous exercise on a treadmill has been shown to slow the progression of Parkinson's disease in patients, the molecular reasons behind it have remained a mystery.

Robotic device improves balance and gait in Parkinson's disease patients

December 19, 2017
Some 50,000 people in the U.S. are diagnosed with Parkinson's disease (PD) every year. The American Institute of Neurology estimates there are one million people affected with this neurodegenerative disorder, with 60 years ...

New findings point to potential therapy for Parkinson's Disease

December 19, 2017
A new study, published in Proceedings of the National Academy of Sciences (PNAS), sheds light on a mechanism underlying Parkinson's disease and suggests that Tacrolimus—an existing drug that targets the toxic protein interaction ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.