Zebrafish discovery may shed light on human kidney function

February 20, 2014, Mayo Clinic

Researchers say the discovery of how sodium ions pass through the gill of a zebrafish may be a clue to understanding a key function in the human kidney. The findings from a collaboration between Mayo Clinic and the Tokyo Institute of Technology appear in the online issue of the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

The researchers discovered a protein responsible for gas exchanges in the fish gill structure. Specifically they studied and characterized the Na+/H+ (sodium/hydrogen) exchanger named NHE3, responsible for controlling sodium and across the gill. The researchers also directly demonstrated that NHE3 can function as a Na+/NH4+ (sodium/ammonium) exchanger.

"This is significant because the fish tends to mimic the process in humans," says Michael Romero, Ph.D., a Mayo Clinic physiologist who works in nephrology. "This is the true beauty of comparative physiology-– a lot of the organs function by very similar processes, down to ionic transfer."

In this case the protein allows the sodium ions to be absorbed from the forming urine while at the same time discarding waste from normally functioning cells, thus keeping the body in balance and serving as an energy saving system. The researchers say the same NHE3 protein performs a similar function in the intestine, pancreas, liver, lungs and reproductive system.

The gill is used in the fish as a transport system: sodium ions are nutrients and ammonium carries away waste. It's a key process allowing zebrafish to extract from fresh water. In humans, NHE3 is involved in the acid-waste control system in the kidney, but there hasn't been a good analysis of that process in humans. Part of this acid-control process in the human kidney is "ammoniagenesis" which requires the initial part of the tubule (proximal tubule) to export ammonia/ammonium. Physiologically, it has been assumed that NHE3 can perform a Na+/NH4+ exchange, but this has never been experimentally demonstrated.

Ammoniagenesis and increased renal sodium bicarbonate absorption are partly under the control of the renin-angiotensin-aldosterone system (RAAS), which means that this work enhances understanding of human hypertension. Researchers say their results in fish can be a clue or starting point for analyzing the process in people. Researchers say they hope to continue their work in other species and ultimately further describe the process in humans.

Explore further: New insights into salt transport in the kidney

Related Stories

New insights into salt transport in the kidney

August 23, 2012
Sodium chloride, better known as salt, is vital for the organism, and the kidneys play a crucial role in the regulation of sodium balance. However, the underlying mechanisms of sodium balance are not yet completely understood. ...

Diets high in salt could deplete calcium in the body: research

July 24, 2012
The scientific community has always wanted to know why people who eat high-salt diets are prone to developing medical problems such as kidney stones and osteoporosis.

Prophylactic sodium bicarbonate infusion and acute kidney injury after open heart surgery

April 16, 2013
Contrary to the positive findings of a previous pilot study, administration of a sodium bicarbonate-based infusion to induce urinary alkalinization during and after surgery does not reduce the incidence of acute kidney injury ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.