Blood-brain barrier repair after stroke may prevent chronic brain deficits

March 25, 2014, University of South Florida

Following ischemic stroke, the integrity of the blood-brain barrier (BBB), which prevents harmful substances such as inflammatory molecules from entering the brain, can be impaired in cerebral areas distant from initial ischemic insult. This disruptive condition, known as diaschisis, can lead to chronic post-stroke deficits, University of South Florida researchers report. In experiments using laboratory rats modeling ischemic stroke, USF investigators studied the consequences of the compromised BBB at the chronic post-stroke stage. Their findings appear in a recent issue of the Journal of Comparative Neurology.

"Following , the pathological changes in remote areas of the brain likely contribute to chronic deficits," said neuroscientist and study lead author Svitlana Garbuzova-Davis, PhD, associate professor in the USF Health Department of Neurosurgery and Brain Repair. "These changes are often related to the loss of integrity of the BBB, a condition that should be considered in the development of strategies for treating stroke and its long-term effects."

Edward Haller of the USF Department of Integrative Biology, the coauthor who performed electron microscopy and contributed to image analysis, emphasized that "major BBB damage was found in endothelial and pericyte cells, leading to capillary leakage in both brain hemispheres." These findings were essential in demonstrating persistence of microvascular alterations in chronic ischemic stroke.

While is life-threatening, the authors point out that survivors often suffer insufficient blood flow to many parts of the brain that can contribute to persistent damage and disability. Their previous investigation of subacute ischemic stroke showed far-reaching microvascular damage even in areas of the brain opposite from the initial stroke injury. While most studies of stroke and the BBB explore the acute phase of stroke and its effect on the , the present study revealed the longer-term effects in various parts of the brain.

The pathologic processes of stroke-induced vascular injury tend to occur in a "time-dependent manner," and can be separated into acute (minutes to hours), subacute (hours to days), and chronic (days to months). BBB incompetence during post-stroke changes is well-documented, with some studies showing the BBB opening can last up to four to five days after stroke. This suggests that harmful substances entering the brain during this prolonged BBB leakage might increase post-ischemic brain injury.

In this study, the researchers used laboratory rats modeling ischemic stroke and observed injury not only in the primary area of the stroke, but also in remote areas, where persistent BBB damage could cause chronic loss of competence.

"Our results showed that the compromised BBB integrity detected in post-ischemic rat cerebral hemisphere capillaries—both ipsilateral and contralateral to initial stroke insult—might indicate chronic diaschisis," Garbuzova-Davis said. "Widespread microvascular damage caused by endothelial cell impairment could aggravate neuronal deterioration. For this reason, chronic diaschisis poses as a therapeutic target for stroke."

The primary focus for therapy development could be restoring endothelial and/or astrocytic integrity towards BBB repair, which may be "beneficial for many chronic stroke patients," senior authors Cesar V. Borlongan and Paul R. Sanberg suggest. The researchers also recommend that cell therapy might be used to replace damaged endothelial cells.

"A combination of cell therapy and the inhibition of inflammatory factors crossing the blood- barrier may be a beneficial treatment for ," Garbuzova-Davis said.

Explore further: Researchers find far-reaching, microvascular damage in uninjured side of brain after stroke

More information: Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at chronic stage. Garbuzova-Davis S, Haller E, Williams SN, Haim ED, Tajiri N, Hernandez-Ontiveros DG, Frisina-Deyo A, Boffeli SM, Sanberg PR, Borlongan CV. Journal of Comparative Neurology, March 8, 2014. DOI: 10.1002/cne.23582

Related Stories

Researchers find far-reaching, microvascular damage in uninjured side of brain after stroke

May 20, 2013
While the effects of acute stroke have been widely studied, brain damage during the subacute phase of stroke has been a neglected area of research. Now, a new study by the University of South Florida reports that within a ...

Peritoneal dialysis as an intervention for stroke patients

September 3, 2013
Ischemic stroke is characterized by an interruption of the blood supply to the brain, which can lead to brain damage and even death. Excess amounts of the excitatory neurotransmitter glutamate are released during stroke events ...

Substance naturally found in humans is effective in fighting brain damage from stroke

March 11, 2014
A molecular substance that occurs naturally in humans and rats was found to "substantially reduce" brain damage after an acute stroke and contribute to a better recovery, according to a newly released animal study by researchers ...

Halting immune response could save brain cells after stroke

March 13, 2014
A new study in animals shows that using a compound to block the body's immune response greatly reduces disability after a stroke.

Visualizing real-time development of capillary networks in adult brains

March 21, 2014
The advancement of microscopic photoimaging techniques has enabled the visualization of real-time cellular events in living organs. The brain capillary network exhibits a unique feature that forms a blood-brain barrier (BBB), ...

Cocaine may increase stroke risk within 24 hours of use

February 12, 2014
Cocaine greatly increases ischemic stroke risk in young adults within 24 hours of use, according to research presented at the American Stroke Association's International Stroke Conference 2014.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.