Visualizing real-time development of capillary networks in adult brains

March 21, 2014
Scientists at the University of Electro-Communications in Tokyo, National Institute of Radiological Sciences, and Keio University School of Medicine, have revealed how the blood-brain barrier (BBB) reacts to oxygen deprivation (hypoxia) in adult mouse brains. 4D imaging with multi-photon microscopy revealed sprouting of the new capillary (green) which stimulate adaptive changes of the neighboring astrocytic processes (red), as shown above.

The advancement of microscopic photoimaging techniques has enabled the visualization of real-time cellular events in living organs. The brain capillary network exhibits a unique feature that forms a blood-brain barrier (BBB), which is an interface of vascular endothelial cells that control the traffic of substances from the bloodstream into the brain. Damage and disruption to the BBB are implicated in contributing to the pathogenesis and progression of neurodegenerative disorders such as Alzheimer's and epilepsy. However, the cellular interactions present in the BBB are incredibly difficult to study in vivo, so understanding of these mechanisms in living brains is limited.

Now, Kazuto Masamoto and co-workers at the University of Electro-Communications in Tokyo, National Institute of Radiological Sciences, and Keio University School of Medicine, have used 4D live imaging technology to study the effects of (a deprivation of oxygen) on the BBB plasticity in live adult mice.

The team focused their attention on how the BBB plastic changes work against hypoxia, looking in particular at the and their communications to the neighboring astrocytes - interactions which take place in controlling the BBB traffic to fulfill neural demands. Using genetically-modified mice with endothelial cells that express green-fluorescent protein, Masamoto and colleagues imaged the real-time changes of BBBs before and during a three-week period of hypoxia in adult mouse cortex.

Their results showed that the capillaries in the BBB, which prior to hypoxia showed no signs of activity, began to sprout new blood vessels which in places formed new networks together. The neighboring astrocytes reacted quickly to wrap the outside of the new vessels, activity which the researchers believe helps stabilize the BBB traffic and integrity.

Further investigations into the molecular mechanisms that control BBB plasticity are expected to lead to advances in treatment of neurodegenerative disorders and cerebral ischemia, and thus provide an effective way for preventing BBB dysfunction in diabetes, hypertension, and aging.

Explore further: Research opens up possibility of therapies to restore blood-brain barrier

More information: Kazuto Masamoto, et al. "Microvascular sprouting, extension, and creation of new capillary connections with adaptation of the neighboring astrocytes in adult mouse cortex under chronic hypoxia." Journal of Cerebral Blood Flow & Metabolism 34, 325-331 (February 2014) | DOI: 10.1038/jcbfm.2013.201

Related Stories

Research opens up possibility of therapies to restore blood-brain barrier

January 2, 2013
(Medical Xpress)—Research led by Queen Mary, University of London, has opened up the possibility that drug therapies may one day be able to restore the integrity of the blood-brain barrier, potentially slowing or even reversing ...

New method for efficiently transporting antibodies across the blood-brain barrier reported

January 8, 2014
Today the scientific journal Neuron published results on the Roche-designed Brain Shuttle technology that efficiently transfers investigational antibodies from the blood through the blood-brain barrier (BBB) into the brain ...

New technique allows anti-breast cancer drugs to cross blood-brain barrier

October 9, 2013
Some breast cancer drugs can penetrate the blood-brain barrier (BBB), but they have not been very effective against brain metastases, whereas other, more effective anti-breast cancer drugs cannot penetrate the BBB at all. ...

Breaking through the blood-brain barrier

May 13, 2013
To mark the European Month of the Brain, we look at one EU-funded project that has focussed efforts on drug delivery across the so-called blood-brain barrier. The blood-brain barrier (BBB), while preforming a key protective ...

Recommended for you

Brain stimulation may improve cognitive performance in people with schizophrenia

July 24, 2017
Brain stimulation could be used to treat cognitive deficits frequently associated with schizophrenia, according to a new study from King's College London.

New map may lead to drug development for complex brain disorders, researcher says

July 24, 2017
Just as parents are not the root of all their children's problems, a single gene mutation can't be blamed for complex brain disorders like autism, according to a Keck School of Medicine of USC neuroscientist.

Bird songs provide insight into how developing brain forms memories

July 24, 2017
Researchers at the University of Chicago have demonstrated, for the first time, that a key protein complex in the brain is linked to the ability of young animals to learn behavioral patterns from adults.

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.