Research opens up possibility of therapies to restore blood-brain barrier

January 2, 2013, Queen Mary, University of London
Research opens up possibility of therapies to restore blood-brain barrier
Cerebral capillary of an ANXA1 null mouse

(Medical Xpress)—Research led by Queen Mary, University of London, has opened up the possibility that drug therapies may one day be able to restore the integrity of the blood-brain barrier, potentially slowing or even reversing the progression of diseases like multiple sclerosis (MS). The study, funded by the Wellcome Trust, is published in Proceedings of the National Academy of Sciences.

The blood-brain barrier (BBB) is a layer of cells, including endothelial cells, which line the blood vessels in the brain and spinal cord. These cells act as a barrier, stopping certain molecules, including and viruses, passing from the blood stream into the (brain and spinal cord).

In a number of neurodegenerative , including MS, the BBB is compromised, allowing inappropriate cells to pass into the brain with devastating consequences.

In this study the researchers identified a specific protein – known as Annexin A1 (ANXA1) – as being integral in maintaining the BBB in the brain. The authors initially found that mice bred to lack this protein showed a decrease in integrity of the BBB compared to controls.

Taking this finding, they then investigated the potential role of ANXA1 in conditions which involve progressive breakdown of the BBB, including MS and Parkinson's disease, by examining post-mortem human brain tissue samples. ANXA1 was present in the cells of samples from individuals who did not have a neurological disease and also in samples from patients who had died with Parkinson's disease. However, it was not detectable in the endothelial cells in samples from patients who had died with MS.

Crucially, the researchers found that treating in vitro brain endothelial cells with human recombinant ANXA1 restored the key cellular features needed to reinstate the integrity of the BBB. The same was seen with the ANXA1 , where administering the protein reversed the permeability of the BBB within 24 hours.

Dr Egle Solito, from Barts and The London School of Medicine and Dentistry, part of Queen Mary, who co-ordinated the study said: "Our findings suggest this protein plays a key role in maintaining a functioning BBB and, more importantly, has the potential to rescue defects in the BBB. We now need to carry on our research to see how much this molecule may be exploited for therapeutic uses in conditions such as MS, or as a biomarker to help in early diagnosis."

Explore further: A breakthrough in pinpointing protective mechanisms in Multiple Sclerosis

Related Stories

A breakthrough in pinpointing protective mechanisms in Multiple Sclerosis

December 2, 2011
In an article published in the prestigious journal Science, a team of researchers led by Dr Alexander Prat and postgraduate fellow Jorge Alvarez at the University of Montreal Hospital Research Centre (CRCHUM) sheds light ...

Receptor may hold key to multiple sclerosis treatment

June 11, 2012
(Medical Xpress) -- A receptor recently discovered to control the movement of immune cells across central nervous system barriers (including the blood-brain barrier) may hold the key to treating multiple sclerosis (MS), a ...

Opening the brain to new treatments

March 13, 2012
One of the trickiest parts of treating brain conditions is the blood brain barrier, a blockade of cells that prevent both harmful toxins and helpful pharmaceuticals from getting to the body's control center. But, a technique ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

MSdragonslayer
not rated yet Jan 20, 2013
Here we are again - starting a research project in the middle instead of at the beginning and using mice that do not have MS. And you cannot replicate a disease unless you know the cause, especially this one which is looking more and more like a scam generator than anything else. Lesions is a symptom of many different diseases. How about promoting proper testing to eliminate things like Lyme, Cpn, Mercury Toxicity and etc. A goodly number of people are finding out that they do NOT have MS but they do have one of those diseases I just listed. It's not rocket science. It's grade 5 logic!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.