Receptor may hold key to multiple sclerosis treatment

June 11, 2012 By Krishna Ramanujan
This image shows the A2A adenosine receptor (in red) abundantly expressed in the central nervous system (CNS). The blue color identifies the nuclei of cells in the CNS.

(Medical Xpress) -- A receptor recently discovered to control the movement of immune cells across central nervous system barriers (including the blood-brain barrier) may hold the key to treating multiple sclerosis (MS), a neuroinflammatory disease of the central nervous system.

In MS, immune cells enter the and attack and destroy the surrounding the of in the brain and spinal cord, resulting in blindness, paralysis, incontinence and many more symptoms.

The research, appearing last month online and in print June 1 in the Journal of Immunology, reveals how the A2A adenosine receptor expressed on blood-brain barrier cells acts as a gateway, allowing immune cells to enter the brain, where they can cause havoc in people with MS.

The blood-brain barrier is composed of specialized cells that selectively prevent substances from passing from the into the brain.

"We found that expression of this A2A adenosine receptor is important for regulating the entry of cells into the brain; whereby its activation allows immune cell entry and its blocks entry," said Margaret Bynoe, associate professor of immunology at Cornell's College of Veterinary Medicine and senior author of the paper, which was also selected as a featured publication in the "In This Issue" section of the journal, where the top 10 percent of manuscripts are featured. Jeffrey Mills, a postdoctoral associate in Bynoe's lab, is the paper's lead author.

In this study, the researchers used mice where the A2A adenosine receptor was knocked out and then infused those mice with normal immune cells from wild-type mice expressing the A2A adenosine receptor. This produced chimeric mice expressing the A2A receptor on immune cells, but not on blood-brain barrier cells. Without A2A receptor on blood-brain barrier cells, the normal failed to effectively infiltrate the central nervous system, and thus, these mice were protected and developed less severe symptoms of MS-like disease.

"The absence of the A2A receptor on blood-brain barrier cells is similar to the effect of pharmacologically blocking the receptor with antagonists [drugs], which also protected mice from MS-like disease," Bynoe said.

"The implications of these findings are that, potentially, modulation of this receptor can be beneficial for future treatment of MS," she added.

The study was funded by the National Institutes of Health.

Explore further: Breaching the blood-brain barrier: Researchers may have solved 100-year-old puzzle

Related Stories

Recommended for you

Research could lead to better vaccines and new antivirals

February 27, 2017

Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a new regulator of the innate immune response—the immediate, natural immune response to foreign invaders. The study, published recently ...

Nature study suggests new therapy for Gaucher disease

February 22, 2017

Scientists propose in Nature blocking a molecule that drives inflammation and organ damage in Gaucher and maybe other lysosomal storage diseases as a possible treatment with fewer risks and lower costs than current therapies.

T cells support long-lived antibody-producing cells

February 21, 2017

If you've ever wondered how a vaccine given decades ago can still protect against infection, you have your plasma cells to thank. Plasma cells are long-lived B cells that reside in the bone marrow and churn out antibodies ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.