Model predicts blood glucose levels 30 minutes later

March 25, 2014, Pennsylvania State University

A mathematical model created by Penn State researchers can predict with more than 90 percent accuracy the blood glucose levels of individuals with type 1 diabetes up to 30 minutes in advance of imminent changes in their levels—plenty of time to take preventative action.

"Many people with type 1 diabetes use continuous glucose monitors, which examine the fluid underneath the skin," said Peter Molenaar, Distinguished Professor of Human Development and Family Studies and of psychology. "But the under the skin trail from anywhere between 8 and 15 minutes. This is especially problematic during sleep. Patients may become hypoglycemic well before the glucose monitor alarm tells them they are hypoglycemic, and that could lead to death."

According to Molenaar, a person's blood glucose levels fluctuate in response to his or her insulin dose, meal intake, physical activity and emotional state. How great these fluctuations are depends on the individual.

"In the past decade, much progress has been made in the development of a mechanical 'artificial pancreas,' which would be a wearable or implantable automated insulin-delivery system consisting of a continuous glucose monitor, an and a control algorithm closing the loop between glucose sensing and ," he said. "But creating an artificial pancreas that delivers the right amount of insulin at the right times has been a challenge because it is difficult to create a control algorithm that can handle the variability among individuals. Our new is able to capture this variability. It predicts the blood glucose levels of individuals based on insulin dose and meal intake."

The researchers created a time-varying model estimated by the extended Kalman filtering technique. This model accounts for time-varying changes in glucose kinetics due to insulin and meal intake.

The team tested the accuracy of its model using an FDA-approved UVa/Padova simulator with 30 virtual patients and five living patients with . The results appeared online this week in the Journal of Diabetes Science and Technology.

"We learned that the dynamic dependencies of on insulin dose and meal intake vary substantially in time within each patient and between patients," said Qian Wang, professor of mechanical engineering. "The high prediction fidelity of our model over 30-minute intervals allows for the execution of optimal control of fast-acting insulin dose in real time because the initiation of insulin action has a delay of less than 30 minutes. Our approach outperforms standard approaches because all our model parameters are estimated in real time. Our model's configuration of recursive estimator and optimal controller will constitute an effective ."

Explore further: Blood sugar testing with no sharps

Related Stories

Blood sugar testing with no sharps

March 13, 2014
Measuring blood sugar when you have diabetes usually involves pricking your finger and using a glucose monitor for the test. While this approach can give people with diabetes vital information about whether they need to take ...

Loss of function of a single gene linked to diabetes in mice

January 4, 2014
Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were ...

Dual-hormone artificial pancreas is a step closer for patients with Type 1 diabetes

January 28, 2013
For patients with type 1 diabetes, a dual-hormone artificial pancreas system (also known as a closed-loop delivery system) improved the control of glucose levels and reduced the risk of hypoglycemia compared with conventional ...

Brain may play key role in blood sugar metabolism and development of diabetes

November 6, 2013
A growing body of evidence suggests that the brain plays a key role in glucose regulation and the development of type 2 diabetes, researchers write in the Nov. 7 issue of the journal Nature. If the hypothesis is correct, ...

Insulin sensitivity normally highest after breakfast

October 26, 2012
(HealthDay)—In healthy people without diabetes, glucose responsiveness tends to be higher after breakfast, which may have implications for the design of closed-loop insulin delivery systems for diabetes patients, according ...

Recommended for you

Genetic discovery may help better identify children at risk for type 1 diabetes

January 17, 2018
Six novel chromosomal regions identified by scientists leading a large, prospective study of children at risk for type 1 diabetes will enable the discovery of more genes that cause the disease and more targets for treating ...

Women who have gestational diabetes in pregnancy are at higher risk of future health issues

January 16, 2018
Women who have gestational diabetes mellitus (GDM) during pregnancy have a higher than usual risk of developing type 2 diabetes, hypertension, and ischemic heart disease in the future, according to new research led by the ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Discovery could lead to new therapies for diabetics

January 12, 2018
New research by MDI Biological Laboratory scientist Sandra Rieger, Ph.D., and her team has demonstrated that an enzyme she had previously identified as playing a role in peripheral neuropathy induced by cancer chemotherapy ...

Enzyme shown to regulate inflammation and metabolism in fat tissue

January 11, 2018
The human body has two primary kinds of fat—white fat, which stores excess calories and is associated with obesity, and brown fat, which burns calories in order to produce heat and has garnered interest as a potential means ...

Big strides made in diabetes care

January 5, 2018
(HealthDay)—This past year was a busy, productive one for diabetes research and care.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.