Novel gene-finding approach yields a new gene linked to key heart attack risk factor

March 16, 2014, University of Michigan Health System

Scientists have discovered a previously unrecognized gene variation that makes humans have healthier blood lipid levels and reduced risk of heart attacks—a finding that opens the door to using this knowledge in testing or treatment of high cholesterol and other lipid disorders.

But even more significant is how they found the gene, which had been hiding in plain sight in previous hunts for genes that influence .

This region of DNA where it was found had been implicated as being important in controlling in a report from several members of the same research team in 2008. But although this DNA region had many genes, none of them had any obvious link to blood . The promise of an entirely new lipid-related gene took another six years and a new approach to find.

In a new paper in Nature Genetics, a team from the University of Michigan and the Norwegian University of Science and Technology report that they zeroed in on the gene in an entirely new way.

The team scanned the genetic information available from a biobank of thousands of Norwegians, focusing on variations in genes that change the way proteins function. Most of what they found turned out to be already known to affect cholesterol levels and other blood lipids.

But one gene, dubbed TM6SF2, wasn't on the radar at all. In a minority of the Norwegians who carried a particular change in the gene, blood lipid levels were much healthier and they had a lower rate of . And when the researchers boosted or suppressed the gene in mice, they saw the same effect on the animals' levels.

"Cardiovascular disease presents such a huge impact on people's lives that we should leave no stone unturned in the search for the genes that cause heart attack," says Cristen Willer, Ph.D., the senior author of the paper and an assistant professor of Internal Medicine, Human Genetics and Computational Medicine & Bioinformatics at the U-M Medical School.

"While genetic studies that focused on common variations may explain as much as 30 percent of the genetic component of lipid disorders, we still don't know where the rest of the genetic risk comes from," Willer adds. "This approach of focusing on protein-changing variation may help us zero in on new faster."

Willer and Kristian Hveem of the Norwegian University of Science and Technology led the team that published the new result. Intriguingly, Willer and colleagues suggest the same gene may also be involved in regulating lipid levels in the liver—a finding confirmed by the observations of a team led by Jonathan Cohen and Helen Hobbs, who propose a role for the gene in liver disease in the same issue of Nature Genetics.

Hveem, a gastroenterologist, says that "more research into the exact function of this protein will be needed to understand the role it plays in these two diseases, and whether it can be targeted with new drug therapies to reduce risk—or treat—one or both diseases."

The success of the scientific experiment was due to efficient screening of thousands of Norwegian samples and clinical information amassed over a 30-year period by the The Nord-Trøndelag Health Study (HUNT) and the Tromsø Study.

The HUNT Biobank was selected as the "European Research Biobank of the Year" in 2013. Hveem, its managing director, says, "We knew this day would come, when we would see the scientific success stories of decades of labor and tens of thousands of participants donating samples, and it is very rewarding."

Lead author on the study, Oddgeir Holmen of Norwegian University of Science and Technology, adds, "These are exciting times for disease genetics. The combination of large population-based studies and the rapid development in genotyping technologies will probably help us understand a great deal more about cardiovascular disease, and other diseases, in the next few years."

Explore further: Massive DNA study points to new heart drug targets and a key role for triglycerides

More information: Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk, Nature Genetics, 10.1038/ng.2926

Related Stories

Massive DNA study points to new heart drug targets and a key role for triglycerides

October 6, 2013
A global hunt for genes that influence heart disease risk has uncovered 157 changes in human DNA that alter the levels of cholesterol and other blood fats – a discovery that could lead to new medications.

Researchers use genetic signals affecting lipid levels to probe heart disease risk

February 7, 2014
New genetic evidence strengthens the case that one well-known type of cholesterol is a likely suspect in causing heart disease, but also casts further doubt on the causal role played by another type. The findings may guide ...

New genetic analysis method holds promise for understanding causes of disease

December 17, 2013
(Medical Xpress)—University of Michigan School of Public Health researchers have developed a new method for identifying rare gene variants, which scientists now believe are more informative for human disease studies than ...

Study identifies liver gene that regulates cholesterol and fat blood levels

February 7, 2013
Researchers have identified a microRNA liver gene, miR-27b, which regulates lipid (cholesterol or fat) levels in the blood. This regulator gene controls multiple genes involved in dyslipidemia—abnormal blood cholesterol ...

Breast cancer gene protects against obesity, diabetes

March 12, 2014
(Medical Xpress)—The gene known to be associated with breast cancer susceptibility, BRCA 1, plays a critical role in the normal metabolic function of skeletal muscle, according to a new study led by University of Maryland ...

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.