Study identifies gene important to breast development and breast cancer

March 6, 2014, Tufts University

A new study in Cell Reports identifies a gene important to breast development and breast cancer, providing a potential new target for drug therapies to treat aggressive types of breast cancer.

Understanding more about how the different types of in develop improves our knowledge of breast cancer. TAZ represents a potential new target for to treat aggressive types of breast cancer.

Background: In cancer, can become unpredictable or aggressive and thus difficult to treat with anti-cancer drugs. This is especially true in breast cancer. By identifying the genes responsible for this change in cells from breast tissue, researchers hope to identify a way to stop or reverse it.

In breast tissue, there are two main types of cells: luminal cells and . Normally luminal cells are "programmed" by a particular class of proteins (transcription factors), which prevent them from becoming basal cells, and vice-versa.

Previous work led by Charlotte Kuperwasser, principal investigator, determined that some common forms of breast cancer originate from luminal cells while some rarer forms of breast cancer originate from basal cells.

The research team identified a gene, TAZ, which controls whether behave more like basal cells or more like luminal cells, information that might be important in understanding and potentially treating certain difficult-to-treat forms of breast cancer. TAZ helps to regulate how different genes operate in different cell types.

How the Study Was Conducted: The research team identified TAZ by testing the function of more than 1,000 genes to determine which were involved in "reprogramming" luminal and basal cells, therefore reversing lineage commitment.

To further identify the role of TAZ, the research team studied breast tissue at different stages of development using two groups of mice: a control group with the TAZ gene and an experimental group of knock-out mice with the TAZ gene deleted. (Cells in breast tissue are renewed/developed during puberty, pregnancy, and nursing.)

The team also looked at the levels of the TAZ gene in tumors from women with either luminal or basal tumors.

The research team found that the experimental group had an imbalance of cell populations in breast tissue: too many luminal and too few basal. The control group had a normal ratio of luminal to basal cells. In breast tissue from women with cancer, they found high levels of TAZ in basal but not luminal tumors.

First author Adam Skibinski, M.D./Ph.D. student at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University: "We've known for a long time that breast cells can lose their normal identity when they become cancerous, but we are now realizing that normal cells can change their characteristics as well in response to transcription factors like TAZ. This might be a factor in the development of ."

Explore further: Long-lived breast stem cells could retain cancer legacy

More information: Skibinski et al., The Hippo Transducer TAZ Interacts with the SWI/SNF Complex to Regulate Breast Epithelial Lineage Commitment, Cell Reports (2014), www.cell.com/cell-reports/full … 2211-1247(14)00152-1

Related Stories

Long-lived breast stem cells could retain cancer legacy

January 26, 2014
Researchers from Melbourne's Walter and Eliza Hall Institute have discovered that breast stem cells and their 'daughters' have a much longer lifespan than previously thought, and are active in puberty and throughout life.

Scientists identify gene that controls aggressiveness in breast cancer cells

July 3, 2013
In a discovery that sheds new light on the aggressiveness of certain breast cancers, Whitehead Institute researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type ...

Team finds potential cause for deadly breast cancer relapse

November 25, 2013
Researchers at the UNC School of Medicine, working with cell lines in a lab, have discovered why some of the most aggressive and fatal breast cancer cells are resistant to chemotherapy, and UNC scientists are developing ways ...

Enhanced luminal breast tumor response to antiestrogen therapy

September 3, 2013
Breast cancer can be divided into 4 major subtypes using molecular and genetic information from the tumors. Each subtype is associated with different prognosis and should be taken into consideration when making treatment ...

Cellular origin of a rare form of breast cancer identified

September 22, 2011
Identifying the cellular origins of breast cancer might lead to earlier diagnosis and more efficient management of the disease. New research led by Charlotte Kuperwasser of Tufts University School of Medicine (TUSM) has determined ...

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.