Scientists slow development of Alzheimer's trademark cell-killing plaques

March 17, 2014
Microscopic images after the researchers restored the Golgi structure (red). Credit: Yanzhuang Wang

University of Michigan researchers have learned how to fix a cellular structure called the Golgi that mysteriously becomes fragmented in all Alzheimer's patients and appears to be a major cause of the disease.

They say that understanding this mechanism helps decode amyloid plaque formation in the brains of Alzheimer's patients—plaques that kills cells and contributes to memory loss and other Alzheimer's symptoms.

The researchers discovered the molecular process behind Golgi fragmentation, and also developed two techniques to 'rescue' the Golgi structure.

"We plan to use this as a strategy to delay the disease development," said Yanzhuang Wang, U-M associate professor of molecular, cellular and developmental biology. "We have a better understanding of why plaque forms fast in Alzheimer's and found a way to slow down plaque formation."

The paper appears in an upcoming edition of the Proceedings of the National Academy of Sciences. Gunjan Joshi, a research fellow in Wang's lab, is the lead author.

Wang said scientists have long recognized that the Golgi becomes fragmented in the neurons of Alzheimer's patients, but until now they didn't know how or why this fragmentation occurred.

Credit: University of Michigan

The Golgi structure has the important role of sending molecules to the right places in order to make functional cells, Wang said. The Golgi is analogous to a post office of the cell, and when the Golgi becomes fragmented, it's like a post office gone haywire, sending packages to the wrong places or not sending them at all.

U-M researchers found that the accumulation of the Abeta peptide—the primary culprit in forming plaques that kill cells in Alzheimer's brains—triggers Golgi fragmentation by activating an enzyme called cdk5 that modifies Golgi structural proteins such as GRASP65.

Microscope images of the Golgi structure (red) when fragmented under disease conditions. Credit: Yanzhuang Wang

Wang and colleagues rescued the Golgi structure in two ways: they either inhibited cdk5 or expressed a mutant of GRASP65 that cannot be modified by cdk5. Both rescue measures decreased the harmful Abeta secretion by about 80 percent.

The next step is to see if Golgi can be delayed or reversed in mice, Wang said. This involves a collaboration with the Michigan Alzheimer's Disease Center at the U-M Health System, directed by Dr. Henry Paulson, professor of neurology, and Geoffrey Murphy, assistant professor of physiology and research professor at the U-M Molecular and Behavioral Neuroscience Institute.

The collaboration was made possible by MCubed, a two-year seed funding program to fuel interdisciplinary teams of U-M faculty to pursue research with major societal impact.

Explore further: Poor recycling of BACE1 enzyme could promote Alzheimer's disease

More information: Aβ-induced Golgi fragmentation in Alzheimer's disease enhances Aβ production, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1320192111

Related Stories

Poor recycling of BACE1 enzyme could promote Alzheimer's disease

November 21, 2011
Sluggish recycling of a protein-slicing enzyme could promote Alzheimer's disease, according to a study published online on November 21 in The Journal of Cell Biology.

High-resolution 3-D imaging draws new picture of Golgi's whereabouts during cell division

December 15, 2013
Resolving a fundamental question in cell biology and showing off the powers of new high-resolution 3-D imaging, NIH scientists have discovered where the Golgi apparatus, which sorts newly synthesized proteins for transport ...

Surprising culprit found in cell recycling defect

February 20, 2014
(Medical Xpress)—To remain healthy, the body's cells must properly manage their waste recycling centers. Problems with these compartments, known as lysosomes, lead to a number of debilitating and sometimes lethal conditions.

Recommended for you

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms

August 17, 2017
Cedars-Sinai neuroscience investigators have found that Alzheimer's disease affects the retina—the back of the eye—similarly to the way it affects the brain. The study also revealed that an investigational, noninvasive ...

Could olfactory loss point to Alzheimer's disease?

August 16, 2017
By the time you start losing your memory, it's almost too late. That's because the damage to your brain associated with Alzheimer's disease (AD) may already have been going on for as long as twenty years. Which is why there ...

New Machine Learning program shows promise for early Alzheimer's diagnosis

August 15, 2017
A new machine learning program developed by researchers at Case Western Reserve University appears to outperform other methods for diagnosing Alzheimer's disease before symptoms begin to interfere with every day living, initial ...

Brain scan study adds to evidence that lower brain serotonin levels are linked to dementia

August 14, 2017
In a study looking at brain scans of people with mild loss of thought and memory ability, Johns Hopkins researchers report evidence of lower levels of the serotonin transporter—a natural brain chemical that regulates mood, ...

Alzheimer's risk linked to energy shortage in brain's immune cells

August 14, 2017
People with specific mutations in the gene TREM2 are three times more likely to develop Alzheimer's disease than those who carry more common variants of the gene. But until now, scientists had no explanation for the link.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.