3Qs: A new path to curing chronic Lyme disease

April 11, 2014 by Angela Herring

Earlier this year, the Centers for Disease Control and Prevention projected the number of undiagnosed cases of Lyme disease to be 10-fold higher than previously believed. Of the newly identified 300,000 people infected each year, between 30,000 and 60,000 fall into the category of having chronic Lyme, where symptoms persist despite zero evidence that the pathogen remains in their bodies.

With the support of a Lyme Research Alliance grant, University Distinguished Professor of Biology Kim Lewis in the College of Science is exploring alternative approaches to curing chronic Lyme disease. We asked him to explain his research goals and why now is the perfect time to find a cure.

Why is Lyme a difficult disease to identify and treat?

Lyme is one of those puzzling chronic diseases: while people that are treated by antibiotics shortly after they're bitten by the tic get cured, about 10 to 20 percent don't. So, the question is, Why not?

There two schools of thought about that. The more standard among physicians is that the lingering effects—which could last years without resolution—are effects of the immune system having a perpetual response long after the pathogen is gone. These are aches, pain, fatigue—people are really miserable.

The second school of thought is that the pathogen is still there in a dormant form. And that's where we come in. We are experts in dormant bacteria that are tolerant to antibiotics. We call them persister cells.

What do you hope to accomplish with the new grant?

I think we can contribute two important things apart from asking whether Lyme, like other pathogens, forms persister cells and whether that would explain its chronicity.

First, the treatment regimens for people with chronic Lyme are inadequate because nobody has done the proper clinical microbiology work. We need to find the best possible antibiotic or antibiotic combination for killing the pathogen. It has not yet been done because it's difficult, it's time-consuming, and it's fastidious. On top of that, most clinicians don't believe that chronic Lyme is caused by the pathogen in the first place, so why bother? But we have extensive experience with existing antibiotics, and we know which ones, in principle, will diminish the persister cell population from our work with other pathogens. So, right away we can give some recommendations to those physicians who will prescribe antibiotics for chronic Lyme. Within half a year, we should have a better regimen.

Second, we will check the experimental compounds we're working with in the lab on other , for their effectiveness against Lyme. We've published a number of papers linking persisters to clinical manifestations of the disease, so that's been widely accepted, but with Lyme you don't even know whether symptoms are caused by an irreversibly wrecked immune system or if it's the pathogen in its dormant form.

The first compounds we're going to test against Lyme are pro-drugs, which we've already found to be fairly effective against persisters of e. coli and a number of other bacteria.

We only started our Lyme work this summer, so the drug discovery may take some time. But at a minimum, we will give patients a better regiment of existing antibiotics. It's not just empty promises, where at the end of the road there will be nothing. In , you never know whether your drug will fail or not be approved. But by exploring the effectiveness of existing antibiotics, we can promise that patients will do better than they're doing right now.

Why is now the time address Lyme disease?

It's a perfect time to attack the problem now because there is an unmet need. There is this growing epidemic of Lyme disease and a growing number of people with chronic Lyme who do not have adequate therapeutic options. On the other hand, we've learned a lot from studying other and how to control them.

We had an important breakthrough last year with MRSA, a devastating infection affecting many patients. It's extremely difficult to get rid of the pathogen, and the main outcome is often amputation of a limb or death. We figured that in those cases patients die or suffer limb loss because the pathogen forms these dormant persister cells that are not killed by regular . We were able to identify a compound (called ADEP) that activates protein degradation in those cells and forces them to [self-destruct]. That encourages us that we can similarly treat other infectious diseases including Lyme.

That particular compound (ADEP) doesn't act against Borrelia, which causes Lyme—we tested that. But we now know considerably more than we knew even five years ago and our capabilities are considerably better now. That's why I think this is a great time to attack the problem.

Explore further: New Lyme disease estimate: 300,000 cases a year

Related Stories

New Lyme disease estimate: 300,000 cases a year

August 19, 2013
Health officials say Lyme disease is about 10 times more common than previously reported.

Key to Lyme disease's locale may be found in the gut of a tick

January 16, 2014
The prevalence of Lyme disease varies greatly between different locales throughout the Northeast, even though the deer ticks that transmit Lyme bacterium are common throughout the entire region.

Test for persistent Lyme infection using live ticks shown safe in clinical study

February 12, 2014
In a first-of-its-kind study for Lyme disease, researchers have used live, disease-free ticks to see if Lyme disease bacteria can be detected in people who continue to experience symptoms such as fatigue or arthritis after ...

Even after Lyme disease is gone, its remains may perpetuate inflammation

June 26, 2012
(Medical Xpress) -- Non-infectious proteins of the species of bacteria that causes Lyme disease can remain in the body for a long time after antibiotic therapy, and are capable of causing an inflammatory immune reaction that ...

Large-scale study of preventive antibiotic usage against Lyme disease

April 16, 2013
Today, at the start of the "Tick Week", the National Institute for Public Health and the Environment (RIVM) and Wageningen University are commencing a large-scale study to discover whether preventive use of antibiotics can ...

Recommended for you

Phase 3 trial confirms superiority of tocilizumab to steroids for giant cell arteritis

July 26, 2017
A phase 3 clinical trial has confirmed that regular treatment with tocilizumab, an inhibitor of interleukin-6, successfully reduced both symptoms of and the need for high-dose steroid treatment for giant cell arteritis, the ...

A large-scale 'germ trap' solution for hospitals

July 26, 2017
When an infectious airborne illness strikes, some hospitals use negative pressure rooms to isolate and treat patients. These rooms use ventilation controls to keep germ-filled air contained rather than letting it circulate ...

Researchers report new system to study chronic hepatitis B

July 25, 2017
Scientists from Princeton University's Department of Molecular Biology have successfully tested a cell-culture system that will allow researchers to perform laboratory-based studies of long-term hepatitis B virus (HBV) infections. ...

Male hepatitis B patients suffer worse liver ailments, regardless of lifestyle

July 25, 2017
Why men with hepatitis B remain more than twice as likely to develop severe liver disease than women remains a mystery, even after a study led by a recent Drexel University graduate took lifestyle choices and environments ...

Mind-body therapies immediately reduce unmanageable pain in hospital patients

July 25, 2017
Mindfulness training and hypnotic suggestion significantly reduced acute pain experienced by hospital patients, according to a new study published in the Journal of General Internal Medicine.

Research examines lung cell turnover as risk factor and target for treatment of influenza pneumonia

July 24, 2017
Influenza is a recurring global health threat that, according to the World Health Organization, is responsible for as many as 500,000 deaths every year, most due to influenza pneumonia, or viral pneumonia. Infection with ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 11, 2014
A cure for this disease is long overdue. People are dying, children are being born with it and people are getting reinfected multiple times. How much longer can this epidemic go on? A disease ignored will only grow in numbers

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.