Novel approach to accelerate metabolism could lead to new obesity and type 2 diabetes treatment

April 9, 2014, Beth Israel Deaconess Medical Center

By manipulating a biochemical process that underlies cells' energy-burning abilities, investigators at Beth Israel Deaconess Medical Center (BIDMC) have made a novel discovery that could lead to a new therapy to combat obesity and diabetes.

Published in the April 10 issue of the journal Nature, the new findings show that reducing the amount of nicotinamide N-methyltransferase (NNMT) protein in fat and liver dramatically reduces the development of obesity and diabetes in mice.

'With this discovery, we now have a means of metabolic manipulation that could help speed energy production and lead to weight loss," explains senior author Barbara Kahn, MD, Vice Chair of the Department of Medicine at BIDMC and George Richards Minot Professor of Medicine at Harvard Medical School. "Our findings are particularly exciting because the antisense oligonucleotide [ASO] technology we used to inhibit the NNMT gene in our study is already being used to treat other diseases in humans."

NNMT is an enzyme that processes vitamin B3 and has been linked to certain types of cancer, as well as Alzheimer's disease, explains co-corresponding author Qin Yang, MD, PhD, a Klarman Scholar in the Kahn laboratory at BIDMC and Assistant Professor of Medicine at Harvard Medical School. "Now we have identified an entirely new role for this enzyme in fat tissue, and that is to regulate energy metabolism," he adds.

The new findings hinge on a biochemical mechanism known as a futile cycle, in which cellular reactions are sped up, thereby generating more energy. "We all know people who can seemingly eat whatever they want and not gain weight," explains Kahn. "Part of the reason for this natural weight control owes to basal cellular metabolism – the body's inherent rate of burning energy. A futile cycle is one way to speed up energy utilization in cells."

The investigators first confirmed that levels of NNMT were increased in obese and diabetic mice.

"In a comparison of genetic profiles of fat from mice that were either prone to or protected from developing diabetes, we discovered that the animals that were prone to develop diabetes had a lot of NNMT in the fat and liver," explains Yang. Together with co-first author Daniel Kraus, MD, Kahn and Yang hypothesized that reducing NNMT levels in these tissues would accelerate a series of metabolic reactions involving molecules called polyamines, thereby leading to increased energy expenditure, increased leanness and reduced risk of diabetes and its complications.

"Polyamines are a group of biological molecules that are found throughout the body, which have fundamental functions, including regulating cell growth," explains Kraus. "What's interesting about the is that the process of building and degrading them creates a biochemical cycle in which energy is used up. This is a futile cycle." The team discovered that NNMT inhibition speeds up this futile cycle, resulting in more dietary calories being burned for energy and fewer calories being incorporated into fat.

Importantly, notes Kahn, the team used antisense oligonucleotide (ASO) technology to knock down the NNMT gene. ASOs are short molecular strings of DNA, which can be designed to prevent the synthesis of specific proteins.

"When an ASO is transferred into a cell, it can target a specific gene and suppress it, as was the case with NNMT," explains Kahn. "Because ASOs have already been approved by the U.S. Food and Drug Administration [FDA] for the treatment of genetic causes of elevated cholesterol or hyperlipidemia, as well as the treatment of a viral eye infection, it's possible that clinical trials to test an ASO anti-obesity therapy in humans could readily move forward."

More than one-third of the U.S. adult population is currently obese, according to the U.S. Centers for Disease Control and Prevention (CDC). "Obesity is a serious economic burden to our healthcare system and a major risk factor for developing insulin resistance and diabetes," says Kahn. "While diet and exercise are important in controlling weight, anti-obesity therapies could be of tremendous help, and NNMT looks to be a promising target for future therapeutic development. Furthermore, because obesity is associated with an increased incidence of Alzheimer's disease and certain cancers, disease states in which NNMT is also elevated, an NNMT ASO could potentially also be beneficial in managing these other devastating conditions."

Explore further: Researchers identify a critical link between obesity and diabetes

More information: Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity, Nature, dx.doi.org/10.1038/nature13198

Related Stories

Researchers identify a critical link between obesity and diabetes

March 6, 2014
It's by now well established that obesity is a major risk factor for diabetes. But what exactly is it about extra body fat that leads to insulin resistance and blood glucose elevation, the hallmarks of diabetes?

Researchers determine hormone linked to improved glucose metabolism activates browning of fat

January 9, 2014
Researchers at Joslin Diabetes Center have discovered that a hormone long associated with weight loss and improved glucose metabolism is linked to activation of calorie-burning brown fat. This finding could have implications ...

Reducing liver protein SIRT1 levels

January 22, 2014
A new study led by Boston University School of Medicine (BUSM) demonstrates that the abnormal metabolism linked to obesity could be regulated in part by the interaction of two metabolic regulators, called the NAD-dependent ...

A protein could be a key weapon in the battle of the bulge

April 1, 2014
More than one-third of people in the US are obese. Obesity and its related health problems—including high blood pressure, high cholesterol, diabetes, insulin resistance, and belly fat—affect so many, yet effective treatments ...

Breaking the cycle of obesity, inflammation and disease

December 19, 2013
Researchers at University of Michigan have illuminated an aspect of how the metabolic system breaks down in obesity. The findings provide additional evidence that a drug entering clinical trials at the university could reverse ...

Discovery explains how cellular pathways converge to regulate food intake and body weight

July 3, 2012
In the complex chain of molecular events that underlie eating behaviors and body weight, the AMP-activated protein kinase (AMPK) enzyme has proven to be a critical link.

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.