What bank voles can teach us about prion disease transmission and neurodegeneration

April 3, 2014, Public Library of Science
This image shows accumulation of misfolded, toxic prion protein (brown staining) in the brain of a transgenic mouse expressing bank vole PrP and challenged with human variant Creutzfeldt-Jakob disease (vCJD) prions. Credit: Dr. Joel Watts

When cannibals ate brains of people who died from prion disease, many of them fell ill with the fatal neurodegenerative disease as well. Likewise, when cows were fed protein contaminated with bovine prions, many of them developed mad cow disease. On the other hand, transmission of prions between species, for example from cows, sheep, or deer to humans, is—fortunately—inefficient, and only a small proportion of exposed recipients become sick within their lifetimes.

A study published on April 3rd in PLOS Pathogens takes a close look at one exception to this rule: bank voles appear to lack a species barrier for prion transmission, and their universal susceptibility turns out to be both informative and useful for the development of strategies to prevent prion transmission.

Prions are misfolded, toxic versions of a protein called PrP, which in its normal form is present in all mammalian species that have been examined. Toxic prions are "infectious"; they can induce existing, properly folded PrP proteins to convert into the disease-associated prion form. Prion diseases are rare, but they share features with more common neurodegenerative diseases like Alzheimer's disease.

Trying to understand the unusual susceptibility of bank voles to prions from other species, Stanley Prusiner, Joel Watts, Kurt Giles and colleagues, from the University of California in San Francisco, USA, first tested whether the susceptibility is an intrinsic property of the voles' PrP, or whether other factors present in these rodents make them vulnerable.

The scientists introduced into the gene that codes for the normal bank vole prion protein, thereby generating mice that express bank vole PrP, but not mouse PrP. When these mice get older, some of them spontaneously develop neurologic illness, but in the younger ones the bank vole PrP is in its normal, benign folded state. The scientists then exposed young mice to toxic misfolded prions from 8 different species, including human, cattle, elk, sheep, and hamster.

They found that all of these foreign-species prions can cause prion disease in the , and that the disease develops often more rapidly than it does in bank voles. The latter is likely because the transgenic mice express higher levels of bank vole PrP than are naturally present in the voles.

The results show that the universal susceptibility of bank voles to cross-species prion transmission is an intrinsic property of bank vole PrP. Because the transgenic mice develop prion disease rapidly, the scientists propose that the mice will be useful tools in studying the processes by which toxic prions "convert" healthy PrP and thereby destroy the brain. And because that process is similar across many neurodegenerative diseases, better understanding disease development might have broader implications.

Explore further: Heparin might be the key to prevent prion conversion and disease

More information: Watts JC, Giles K, Patel S, Oehler A, DeArmond SJ, et al. (2014) Evidence That Bank Vole PrP Is a Universal Acceptor for Prions. PLoS Pathog 10(4): e1003990. DOI: 10.1371/journal.ppat.1003990

Related Stories

Heparin might be the key to prevent prion conversion and disease

March 24, 2014
Prions are infectious agents responsible for neurodegenerative diseases such as bovine spongiform encephalitis (commonly known as "mad cow disease") and Creutzfeldt–Jakob disease in humans.

New models advance the study of deadly human prion diseases

August 19, 2013
By directly manipulating a portion of the prion protein-coding gene, Whitehead Institute researchers have created mouse models of two neurodegenerative diseases that are fatal in humans. The highly accurate reproduction of ...

Recommended for you

Selection of a pyrethroid metabolic enzyme CYP9K1 by malaria control activities

April 20, 2018
Researchers from LSTM, with partners from a number of international institutions, have shown the rapid selection of a novel P450 enzyme leading to insecticide resistance in a major malaria vector.

Research finds new mechanism that can cause the spread of deadly infection

April 20, 2018
Scientists at the University of Birmingham have discovered a unique mechanism that drives the spread of a deadly infection.

Study predicts 2018 flu vaccine will have 20 percent efficacy

April 19, 2018
A Rice University study predicts that this fall's flu vaccine—a new H3N2 formulation for the first time since 2015—will likely have the same reduced efficacy against the dominant circulating strain of influenza A as the ...

Low-cost anti-hookworm drug boosts female farmers' physical fitness

April 19, 2018
Impoverished female farm workers infected with intestinal parasites known as hookworms saw significant improvements in physical fitness when they were treated with a low-cost deworming drug. The benefits were seen even in ...

Zika presents hot spots in brains of chicken embryos

April 19, 2018
Zika prefers certain "hot spots" in the brains of chicken embryos, offering insight into how brain development is affected by the virus.

Super-superbug clones invade Gulf States

April 18, 2018
A new wave of highly antibiotic resistant superbugs has been found in the Middle East Gulf States, discovered by University of Queensland researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.