Study IDs new cause of brain bleeding immediately after stroke

April 17, 2014, University of California, Irvine
Assistant professor of developmental & cell biology Dritan Agalliu's work may spur the discovery of imaging methods or biomarkers in humans to detect strokes as early as possible and thereby minimize damage.

By discovering a new mechanism that allows blood to enter the brain immediately after a stroke, researchers at UC Irvine and the Salk Institute have opened the door to new therapies that may limit or prevent stroke-induced brain damage.

A complex and devastating neurological condition, stroke is the fourth-leading cause of death and primary reason for disability in the U.S. The is severely damaged in a stroke and lets blood-borne material into the brain, causing the permanent deficits in movement and cognition seen in .

Dritan Agalliu, assistant professor of developmental & cell biology at UC Irvine, and Axel Nimmerjahn of the Salk Institute for Biological Studies developed a novel transgenic mouse strain in which they use a fluorescent tag to see the tight, barrier-forming junctions between the cells that make up in the . This allows them to perceive dynamic changes in the barrier during and after strokes in living animals.

While observing that barrier function is rapidly impaired after a stroke (within six hours), they unexpectedly found that this early barrier failure is not due to the breakdown of tight junctions between blood vessel cells, as had previously been suspected. In fact, junction deterioration did not occur until two days after the event.

Instead, the scientists reported dramatic increases in carrier proteins called serum albumin flowing directly into brain tissue. These proteins travel through the cells composing blood vessels – endothelial cells – via a specialized transport system that normally operates only in non-brain vessels or immature vessels within the central nervous system. The researchers' work indicates that this transport system underlies the initial failure of the barrier, permitting entry of blood material into the brain immediately after a stroke (within six hours).

"These findings suggest new therapeutic directions aimed at regulating flow through endothelial cells in the barrier after a stroke occurs," Agalliu said, "and any such therapies have the potential to reduce or prevent stroke-induced damage in the brain."

His team is currently using genetic techniques to block degradation of the tight junctions between endothelial in mice and examining the effect on stroke progression. Early post- control of this specialized transport system identified by the Agalliu and Nimmerjahn labs may spur the discovery of imaging methods or biomarkers in humans to detect strokes as early as possible and thereby minimize damage.

Explore further: Blood-brain barrier repair after stroke may prevent chronic brain deficits

Related Stories

Blood-brain barrier repair after stroke may prevent chronic brain deficits

March 25, 2014
Following ischemic stroke, the integrity of the blood-brain barrier (BBB), which prevents harmful substances such as inflammatory molecules from entering the brain, can be impaired in cerebral areas distant from initial ischemic ...

Toward a faster, more accurate way to diagnose stroke

April 9, 2014
When someone suffers from a stroke, a silent countdown begins. A fast diagnosis and treatment can mean the difference between life and death. So scientists are working on a new blood test that one day could rapidly confirm ...

Cell-saving drugs could reduce brain damage after stroke

March 26, 2014
Long-term brain damage caused by stroke could be reduced by saving cells called pericytes that control blood flow in capillaries, reports a new study led by scientists from University College London.

Blood-brain barrier less permeable in newborns than adults after acute stroke

July 10, 2012
The ability for substances to pass through the blood-brain barrier is increased after adult stroke, but not after neonatal stroke, according to a new study the UCSF that will be published July 11 in the Journal of Neuroscience.

Substance naturally found in humans is effective in fighting brain damage from stroke

March 11, 2014
A molecular substance that occurs naturally in humans and rats was found to "substantially reduce" brain damage after an acute stroke and contribute to a better recovery, according to a newly released animal study by researchers ...

Halting immune response could save brain cells after stroke

March 13, 2014
A new study in animals shows that using a compound to block the body's immune response greatly reduces disability after a stroke.

Recommended for you

How do we lose memory? A STEP at a time, researchers say

March 23, 2018
In mice, rats, monkeys, and people, aging can take its toll on cognitive function. A new study by researchers at Yale and Université de Montréal reveal there is a common denominator to the decline in all of these species—an ...

Brain's tiniest blood vessels trigger spinal motor neurons to develop

March 23, 2018
A new study has revealed that the human brain's tiniest blood vessels can activate genes known to trigger spinal motor neurons, prompting the neurons to grow during early development. The findings could provide insights into ...

Being hungry shuts off perception of chronic pain

March 22, 2018
Pain can be valuable. Without it, we might let our hand linger on a hot stove, for example. But longer-lasting pain, such as the inflammatory pain that can arise after injury, can be debilitating and costly, preventing us ...

From signal propagation to consciousness: New findings point to a potential connection

March 22, 2018
Researchers at New York University have discovered a novel mechanism through which information can be effectively transmitted across many areas in the brain—a finding that offers a potentially new way of understanding how ...

Using simplicity for complexity—new research sheds light on the perception of motion

March 22, 2018
A team of biologists has deciphered how neurons used in the perception of motion form in the brain of a fly —a finding that illustrates how complex neuronal circuits are constructed from simple developmental rules.

Focus on early stage of illness may be key to treating ALS, study suggests

March 22, 2018
A new kind of genetically engineered mouse and an innovation in how to monitor those mice during research have shed new light on the early development of an inherited form of amyotrophic lateral sclerosis (ALS).


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.