New target for prostate cancer resistant to anti-hormone therapies

April 23, 2014, University of Michigan Health System
Arul Chinnaiyan, M.D., Ph.D. Credit: University of Michigan Health System

Prostate cancer becomes deadly when anti-hormone treatments stop working. Now a new study suggests a way to block the hormones at their entrance.

Researchers from the University of Michigan Comprehensive Cancer Center have found that a protein called BET bromodomain protein 4 binds to the hormone downstream of where current therapies work – targeting androgen receptor signaling.

This could mean that when prostate cancer becomes resistant to current treatments, it might remain sensitive to a drug that targets BET bromodomain proteins. Results appear in Nature.

"We think we can target prostate cancer through androgen receptor signaling, rather than directly hitting the androgen receptor. These initial findings suggest the potential that a BET bromodomain inhibitor can work even when prostate cancer becomes resistant to anti-hormone therapies," says senior study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Professor of Pathology at the University of Michigan Medical School.

The researchers used a compound called JQ1, designed to inhibit BET bromodomain proteins, to test the concept in cell lines and mice. They found that JQ1 blocked androgen signaling even when cells no longer responded to current anti-androgen therapies. The JQ1 BET bromodomain inhibitor blocked androgen receptor signaling, which is downstream of the androgen receptor, making it potentially unaffected by the acquired resistance related to hormone signaling.

The researchers also found that BET inhibitors appear to block several transcription factors, including the TMPRSS2-ERG gene fusion and MYC, known to drive prostate cancer.

Bromodomain inhibitors have been explored in blood cancers and a rare cancer called NUT midline carcinoma. This is one of the first indications that BET bromodomain inhibitors may be beneficial in a common solid tumor.

A newly formed company, OncoFusion Therapeutics, co-founded by Chinnaiyan and study co-author Shaomeng Wang, Ph.D., will look at developing potential BET bromodomain inhibitors to attack prostate cancer.

"BET bromodomain represents one of the most exciting targets in epigenetics," Chinnaiyan says. "Developing new ways to treat castration-resistant is critical to improving survival for this disease."

Explore further: Study identifies a key cellular pathway in prostate cancer

More information: Paper: Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer, Nature, DOI: 10.1038/nature13229 , published online April 23, 2014

Related Stories

Study identifies a key cellular pathway in prostate cancer

February 10, 2014
Mayo Clinic researchers have shed light on a new mechanism by which prostate cancer develops in men. Central to development of nearly all prostate cancer cases are malfunctions in the androgen receptor—the cellular component ...

Biomarker may identify neuroblastomas with sensitivity to BET bromodomain inhibitors

February 21, 2013
Neuroblastoma, the most common malignant tumor of early childhood, is frequently associated with the presence of MYCN amplification, a genetic biomarker associated with poor prognosis. Researchers have determined that tumors ...

Noninvasive assay monitored treatment response in patients with metastatic prostate cancer

October 23, 2012
Deciding the ideal treatment for patients with metastatic prostate cancer that stops responding to initial therapy could be guided by certain analyses of cancer cells isolated from the patients' blood, according to data published ...

Researchers identify novel class of drugs for prostate cancers

May 28, 2013
A new study on prostate cancer describes a novel class of drugs developed by UT Southwestern Medical Center researchers that interrupts critical signaling needed for prostate cancer cells to grow.

Targeting metabolism to develop new prostate cancer treatments

February 28, 2014
A University of Houston (UH) scientist and his team are working to develop the next generation of prostate cancer therapies, which are targeted at metabolism.

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

Presurgical targeted therapy delays relapse of high-risk stage 3 melanoma

January 17, 2018
A pair of targeted therapies given before and after surgery for melanoma produced at least a six-fold increase in time to progression compared to standard-of-care surgery for patients with stage 3 disease, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.