New type of protein action found to regulate development

April 24, 2014
Brain cells were engineered to produce fluorescent green Botch protein in the developing mouse cortex. Nuclei of cells are in blue. Credit: Zhikai Chi

Johns Hopkins researchers report they have figured out how the aptly named protein Botch blocks the signaling protein called Notch, which helps regulate development. In a report on the discovery, to appear online April 24 in the journal Cell Reports, the scientists say they expect the work to lead to a better understanding of how a single protein, Notch, directs actions needed for the healthy development of organs as diverse as brains and kidneys.

The Johns Hopkins team says their experiments show that Botch uses a never-before-seen mechanism, replacing one chemical group with another that physically blocks the action of another enzyme. "We knew that Botch regulated Notch, and now we know it has its own novel way of getting the job done," says Valina Dawson, Ph.D., professor of neuroscience in the Johns Hopkins University School of Medicine's Institute for Cell Engineering, who led the study. "What's surprising is that Botch doesn't pull from the usual toolkit of enzymatic mechanisms."

Notch is, in fact, a family of four proteins with nearly identical properties and actions in mice and men. The proteins, Dawson says, dwell in the membranes surrounding cells, where they act as receptors, responding to specific signals outside of the cells by starting a chain reaction of signals inside. "There's a laundry list of things Notch does, from getting stem cells to develop into different organs to helping produce red blood cells," Dawson says. "The big question is how a seemingly simple signaling system could have such different effects."

The research team led by Dawson and her husband and collaborator, Ted Dawson, M.D., Ph.D., discovered Botch while looking for proteins that could protect the brain from injury. Since it was a newly found protein, they looked for answers on how Botch functions by finding other proteins with which it could interact, and that resulted in discovering Notch.

After Notch emerges from one of the cell's protein manufacturing centers, several things have to happen before it can go to work in the cell membrane. One of these is the addition of the chemical group glycine to a specific part of the . After that, an enzyme called furin cuts Notch near the glycine site. Botch removes the glycine from the spot where furin cuts. More surprisingly, Valina Dawson says, Botch then replaces the glycine with another chemical group that blocks furin from getting to the cut site. "Researchers are used to seeing enzymes change other proteins' function through common mechanisms, like adding or subtracting a phosphate group," Dawson says. "But Botch uses a tactic that no one has reported seeing before: It lops off glycine and adds a chemical structure called 5-oxy-proline."

Now that scientists know what to look for, they'll likely be able to identify other enzymes that use the same trick, Dawson says, and Botch itself may turn out to have other target proteins. Knowing how Botch works on Notch contributes to scientists' understanding of the biochemistry of development. It may also have implications for the treatment of some leukemias that have been linked to a mutation in the area of Notch close to the Botch-targeted , Dawson adds.

Explore further: Newly discovered protein makes sure brain development isn't 'botched'

Related Stories

Newly discovered protein makes sure brain development isn't 'botched'

May 22, 2012
(Medical Xpress) -- Johns Hopkins scientists have discovered a protein that appears to play an important regulatory role in deciding whether stem cells differentiate into the cells that make up the brain, as well as countless ...

Too much protein may kill brain cells as Parkinson's progresses

April 10, 2014
Scientists may have discovered how the most common genetic cause of Parkinson's disease destroys brain cells and devastates many patients worldwide. The study was partially funded by the National Institutes of Health's National ...

New biological target for combating Parkinson's disease uncovered

August 25, 2013
Researchers at Johns Hopkins and elsewhere have brought new clarity to the picture of what goes awry in the brain during Parkinson's disease and identified a compound that eases the disease's symptoms in mice. Their discoveries, ...

Double duty: Immune system regulator found to protect brain from effects of stroke

November 28, 2012
A small molecule known to regulate white blood cells has a surprising second role in protecting brain cells from the deleterious effects of stroke, Johns Hopkins researchers report. The molecule, microRNA-223, affects how ...

How does pregnancy reduce breast cancer risk?

April 29, 2013
Being pregnant while young is known to protect a women against breast cancer. But why? Research in BioMed Central's open access journal Breast Cancer Research finds that Wnt/Notch signalling ratio is decreased in the breast ...

Paths not taken: Notch signaling pathway keeps immature T cells on the right track

November 23, 2013
One protein called Notch, which has well-known roles in the development of multiple tissues, plays an essential role in triggering T-cell development. Notch signaling induces expression of genes that promote the maturation ...

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.