Scientists emphasize metabolites' role in understanding disease

April 3, 2014, University of Alabama in Tuscaloosa

Overreliance on genetic-centered approaches in predicting, diagnosing and treating disease will lead to few future scientific breakthroughs, cautioned a University of Alabama researcher who co-authored an article in an early online issue of Genetics that advocates for a greater emphasis on the body's metabolites in understanding illnesses.

"To augment the value of genetic data, the scientific community needs to add additional information from things like metabolomics – the analysis of within an organism," said Dr. Laura Reed, a University of Alabama geneticist and the March 25 paper's lead author.

"The Human Genome Project has been sold as something that is going to revolutionize medicine – that soon we will get our genomes sequenced, and we will be able to figure out exactly what diseases we are at risk for and, maybe, the best way to treat them," said Reed. "While it's true there are important innovations to come from that kind of information, it is much more limited than some may have hoped."

Using as animal models in the research publishing in Genetics, the multi-institution team demonstrated how genetics, in combination with metabolomics and gene expression—how genes are turned on—can be used to predict and the organism's response to environmental change, said Reed.

The paper's additional co-authors include representatives from Georgia Tech, Sanford-Burnham Medical Research Institute, La Jolla, Calif.; North Carolina State University; Huck Institutes of the Life Sciences, University Park, Pa.; and Bayer CropScience, Monheim, Germany.

Metabolites are naturally occurring chemicals in the body. While a few, like cholesterol and blood glucose are routinely monitored for the insights they can provide into health conditions, additional metabolites merit closer inspection, the researchers said. Glycine, a metabolite which serves as both an essential amino acid and a neurotransmitter, has previously been shown as a predictor of heart disease and certain cancers.

"We identified another nine metabolites that are also good predictors that have not yet been previously described as associated with these traits," Reed said. "They are good candidates for exploring further. They may not be causal, but they may be correlated."

One day, Reed said, in addition to doctors measuring and cholesterol levels, perhaps they will routinely measure other metabolites as way of improving predictions of disease risks.

In one of the project's aspects, headed by UA, 187 metabolites were measured in flies to determine which ones' levels changed in correlation with weight changes in the flies.

As with mice and other widely accepted animal models used in studying human conditions, many of the biological systems within fruit flies share enough similarities with humans to potentially draw effective insight into human conditions, Reed said.

For example, flies can contract diabetes and, as they age, heart disease. Their insulin-signaling pathways, key in diabetes, share similarities with those of humans, as do their kidneys, liver and the adipose tissue – the types of tissue where fat is stored.

Hundreds of genetically identical flies, grouped by 20 distinct genetic lines, were tested across four different diets. In this way, the researchers are able to determine which aspect of their disease is because of their genes and which aspect is because of their environment or diet.

"One of the important things we found is that the effects of diet are relatively small for , but much more significant for all the metabolites."

In another aspect of the research, led by Georgia Tech, the scientists tracked how the frequency of genes in wild flies changed through time (over multiple generations) in response to diet. Rather than seeing changes in one particular gene or a small group of genes, the researchers saw changes across the entire genome.

"We can't expect to find a gene or just a few genes that explain any phenotype, including disease," Reed said. Disease is a holistic problem, she said, and it's unlikely that additional "miracle drugs" await discovery.

"It's going to be a holistic solution," Reed said.

Reed said she realizes the paper may not be warmly embraced by all her fellow geneticists.

"The overall point of the paper is not a very popular idea," Reed admitted, "because it basically means things are much more complicated than we want them to be. But, that's reality.

"This does not mean that we can't incrementally improve things by understanding the genes that are involved, but, perhaps, a more expedient approach would be analyzing higher level traits, like metabolites, that might summarize what's occurring in the genome in ways more useful for diagnostic or treatment purposes."

Explore further: Lifestyle influences metabolism via DNA methylation

Related Stories

Lifestyle influences metabolism via DNA methylation

September 20, 2013
An unhealthy lifestyle leaves traces in the DNA. These may have specific effects on metabolism, causing organ damage or disease. Scientists of Helmholtz Zentrum München have now identified 28 DNA alterations associated with ...

Cholesterol study shows algal extracts may counter effects of high fat diets

December 20, 2013
Health Enhancement Products, Inc., in conjunction with Wayne State University's Department of Nutrition and Food Science in the College of Liberal Arts and Sciences, announces the publication of a scientific article in the ...

Muscular disease research advanced with flies and mice

March 20, 2014
Indian researchers using flies (Drosophila) and West Australian researchers using mice to study neuromuscular disease are part of an exciting collaboration improving research into muscular diseases and ageing.

Study: Gene-gene interactions important to trait variance

September 11, 2012
(Medical Xpress)—Gaining more insight into predicting how genes affect physical or behavioral traits by charting the genotype-phenotype map holds promise to speed discoveries in personalized medicine. But figuring out exactly ...

Recommended for you

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Large-scale study to pinpoint genes linked to obesity

January 10, 2018
It's not just diet and physical activity; your genes also determine how easily you lose or gain weight. In a study published in the January issue of Nature Genetics, researchers at the Icahn School of Medicine at Mount Sinai ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.