Model sheds new light on sports-related brain injuries

April 29, 2014, University of Rochester Medical Center

A new study has provided insight into the behavioral damage caused by repeated blows to the head. The research provides a foundation for scientists to better understand and potentially develop new ways to detect and prevent the repetitive sports injuries that can lead to the condition known as chronic traumatic encephalopathy (CTE).

The research – which appears online this week in the Journal of Neurotrauma – shows that mice with mild, repetitive traumatic brain injury (TBI) develop many of the same , such as difficultly sleeping, memory problems, depression, judgment and risk-taking issues, that have been associated with the condition in humans.

One of the barriers to potential treatments for TBI and CTE is that no model of the disease exists. Animal equivalents of human diseases are a critical early-stage tool in the scientific process of understanding a condition, developing new ways to diagnose it, and evaluating experimental therapies.

"This new model captures both the clinical aspects of repetitive mild TBI and CTE," said Anthony L. Petraglia, M.D., a neurosurgeon with the University of Rochester School of Medicine and Dentistry and lead author of the study. "While public awareness of the long-term health risk of blows to the head is growing rapidly, our ability to scientifically study the fundamental neurological impact of mild brain injuries has lagged."

There has been a great deal of discussion in recent years regarding concussions as a result of blows to the head in sports. An estimated 3.8 million sports-related concussions occur every year. Mild traumatic brain injury is also becoming more common in military personnel deployed in combat zones. Over time, the frequency and degree of these injuries can lead short and long-term neurological impairment and, in extreme examples, to CTE, a form of .

The experiments described in the study were designed in a manner that simulates the type of mild TBI that may occur in sports or other blows to the head. The researchers evaluated the mice's performance in a series of tasks designed to measure behavior. These included tests to measure spatial and learning memory, anxiety and risk-taking behavior, the presence of depression-like behavior, sleep disturbances, and the electrical activity of their brain. The mice with repetitive mild TBI did poorly in every test and this poor performance persisted over time.

"These results resemble the spectrum of neuro-behavioral problems that have been reported and observed in individuals who have sustained multiple mild TBI and those who were subsequently diagnosed with CTE, including behaviors such as poor judgment, risk taking, and depression," said Petraglia.

Petraglia and his colleagues also used the model to examine the damage that was occurring in the brains of the mice over time. The results, which will be published in a forthcoming paper, provide insight on the interaction between the brains repair mechanisms – in the forms of astrocytes and microglia – and the protein tau, which can have a toxic effect when triggered by mild .

"Undoubtedly further work is needed," said Petraglia. "However, this study serves as a good starting point and it is hoped that with continued investigation this novel model will allow for a controlled, mechanistic analysis of repetitive mild TBI and CTE in the future, because it is the first to encapsulate the spectrum of this human phenomenon."

Explore further: NIH, NFL team up to take on concussion research

Related Stories

NIH, NFL team up to take on concussion research

December 16, 2013
(HealthDay)—The U.S. National Institutes of Health is teaming up with the National Football League on research into the long-term effects of repeated head injuries and improving concussion diagnosis.

In rats, diffuse brain damage can occur with no signs of 'concussion'

March 21, 2014
A standard experimental model of concussion in rats causes substantial brain damage—but no behavioral changes comparable to those seen in patients with concussion, reports a study in the April issue of Neurosurgery, official ...

Is there a period of increased vulnerability for repeat traumatic brain injury?

January 10, 2013
Repeat traumatic brain injury affects a subgroup of the 3.5 million people who suffer head trauma each year. Even a mild repeat TBI that occurs when the brain is still recovering from an initial injury can result in poorer ...

Sports concussions and chronic traumatic encephalopathy

December 3, 2013
It's been widely reported that football and other contact sports increase the risk of a debilitating neurological condition called chronic traumatic encephalopathy (CTE).

Mild traumatic brain injury may alter brain's neuronal circuit excitability and contribute to brain network dysfunction

May 11, 2012
Even mild head injuries can cause significant abnormalities in brain function that last for several days, which may explain the neurological symptoms experienced by some individuals who have experienced a head injury associated ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.