New therapy helps to improve stereoscopic vision in stroke patients

April 16, 2014
Psychologists at Saarland University have developed a novel therapy to help people who are experiencing impaired spatial vision, possibly as a result of a stroke. The researchers use what are known as convergent eye movement. Patients try to fuse the two images to a single image. Credit: Oliver Dietze

Humans view the world through two eyes, but it is our brain that combines the images from each eye to form a single composite picture. If this function becomes damaged, impaired sight can be the result. Such loss of visual function can be observed in patients who have suffered a stroke or traumatic brain injury or when the oxygen supply to the brain has been reduced (cerebral hypoxia). Those affected by this condition experience blurred vision or can start to see double after only a short period of visual effort. Other symptoms can include increased fatigue or headaches. It is been suggested that these symptoms arise because the brain is unable to maintain its ability to fuse the separate images from each eye into a single composite image over a longer period. Experts refer to this phenomenon as binocular fusion dysfunction.

'As a result, these have significantly reduced visual endurance,' explains Katharina Schaadt, a graduate psychology student at Saarland University. 'This often severely limits a patient's ability to work or go about their daily life.' Working at a computer screen or reading the newspaper can be very challenging. As binocular fusion is a fundamental requirement for achieving a three-dimensional impression of depth, those affected also frequently suffer from partial or complete stereo blindness. 'Patients suffering from stereo blindness are no longer able to perceive spatial depth correctly,' says Schaadt. 'In extreme cases, the world appears as flat as a two-dimensional picture. Such patients may well have difficulties in reaching for an object, climbing stairs or walking on uneven ground.'

Although about 20% of and up to 50% of patients with trauma injuries suffer from these types of functional impairments, there is still no effective therapy. Researchers at Saarland University working with Anna Katharina Schaadt and departmental head Professor Georg Kerkhoff have now developed a novel therapeutic approach and have examined its efficacy in two studies. 'Test subjects underwent a six week training program in which both eyes were exercised equally,' explains Schaadt. The aim was to train binocular fusion and thus improve three-dimensional vision. Participants in the study were presented with two images with a slight lateral offset between them. By using what are known as convergent eye movements, patients try to fuse the two images to a single image. This involves directing the eyes inward towards the nose while always keeping the images in the field of view. With time, the two images fuse to form a single image that exhibits stereoscopic depth, i.e. the patient has re-established binocular single vision.

The team of clinical neuropsychologists at Saarland University have used this training programme on eleven stroke patients, nine patients with injury and four hypoxia patients. After completing the training programme, a significant improvement in binocular fusion and stereoscopic vision was observed in all participants. In many cases, a normal level of stereovision was attained. 'The results remained stable in the two post-study examinations that we performed after three and six months respectively,' says Schaadt. 'Visual endurance also improved significantly.' Patients who were able to work at a computer for only 15 to 20 minutes before they began treatment found that they could work at a computer screen for up to three hours after completing the therapeutic training programme.

The results are also of theoretical value to the Saarbrücken scientists, as they provide insight into brain function and indicate that certain regions of the brain that have been become damaged can be reactivated if the appropriate therapy is used.

Explore further: New therapy helps to improve audio and visual perception in stroke patients

More information: Schaadt, A.-K., Schmidt, L., Kuhn, C., Summ, M., Adams, Garbacenkaite, R., Leonhardt, E., Reinhart, S., Kerkhoff, G. (2013) "Perceptual relearning of binocular fusion after hypoxic brain damage: four controlled single-case treatment studies." Neuropsychology, in press. DOI: 10.1037/neu0000019

Schaadt, A.-K., Schmidt,L., Reinhart, S., Adams, M., Garbacenkaite, R., Leonhardt, E., Kuhn, C., Kerkhoff, G. (2013) "Perceptual relearning of binocular fusion and stereoacuity after brain injury." Neurorehabilitation & Neural Repair, in press. DOI: 1545968313516870

Related Stories

New therapy helps to improve audio and visual perception in stroke patients

March 4, 2014
A stroke can cause permanent damage to important parts of the brain, with the result that many stroke survivors require lifelong care and support. 'It is not uncommon for stroke patients to suffer from an awareness deficit ...

Residual activity 'hot spots' in the brain key for vision recovery in stroke patients

January 2, 2014
Scientists know that vision restoration training (VRT) can help patients who have lost part of their vision due to glaucoma, optic nerve damage, or stroke regain some of their lost visual functions, but they do not understand ...

Learning to control brain activity improves visual sensitivity

December 4, 2012
Training human volunteers to control their own brain activity in precise areas of the brain can enhance fundamental aspects of their visual sensitivity, according to a new study. This non-invasive 'neurofeedback' approach ...

Paper examines the illusion of the scintillating grid

December 19, 2012
(Medical Xpress)—The fascinating but deeply weird illusion of the scintillating grid, where the grid appears to sparkle, has been shown to be more sparkly when you view it with both eyes rather than one eye.

Neural activity in the brain is harder to disrupt when we are aware of it

October 22, 2013
We consciously perceive just a small part of the information processed in the brain – but which information in the brain remains unconscious and which reaches our consciousness remains a mystery. However, neuroscientists ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.