Tumor-suppressor connects with histone protein to hinder gene expression

April 10, 2014

A tumor-suppressing protein acts as a dimmer switch to dial down gene expression. It does this by reading a chemical message attached to another protein that's tightly intertwined with DNA, a team led by scientists at The University of Texas MD Anderson Cancer Center reported at the AACR Annual Meeting 2014.

The findings, also published in the journal Nature on April 10, provide evidence in support of the "histone code" hypothesis. The theory holds that histone proteins, which combine with DNA to form chromosomes, are more intimately involved in gene expression than their general role of facilitating or hindering suggests.

The researchers found that high expression of the tumor-suppressor ZMYND11 is associated with longer survival for patients with triple-negative breast cancer.

"This study, for the first time, identifies a novel role of a histone variant protein in regulating gene transcription aside from its established roles," said senior author Xiaobing Shi, Ph.D., assistant professor of Biochemistry and Molecular Biology at The University of Texas MD Anderson Cancer Center.

"We also found that this variant, H3.3, is modified by methylation to create a specific epigenetic landscape that is accommodated by the tumor-suppressing protein ZMYND11. The protein in turn blocks gene activation," Shi said. "This is exactly the type of combined effect predicted by the histone code hypothesis."

Methylation, the attachment of a methyl group to a gene or protein, and other types of histone modifications are considered epigenetic factors, which modify a gene's behavior without changing its DNA coding.

Shi and colleagues found that the protein ZMYND11 "reads" the modified histone H3.3 by connecting to it where a tri-methyl chemical group binds to H3.3. From this position, Shi said, ZMYND11 thwarts a step in gene activation called elongation, inhibiting cancer growth.

ZMYND11 expression shrinks tumors in mice

Extensive structural analysis established that the ZMYND11- methylated H3.3 combination hunkers down in the gene's DNA.

"We knew ZMYND11 was a candidate tumor-suppressor because it's down-regulated in a number of human cancers, including breast cancer," Shi said.

Overexpression of ZMYND11 in an osteosarcoma cell line and a triple-negative breast cancer cell line inhibited tumor growth. Versions of ZMYND11 that could not bind to the trimethyl group on H3.3 did not suppress cancer cell growth or survival.

In a mouse model of triple-negative , mice injected with cancer cells that over-express ZMYND11 had tumor volumes of less than 50 cubic millimeters while control mice and those injected with cells expressing ZMYND11 deficient for binding to the methyl group had tumor volumes ranging from 150 to 400 cubic millimeters at eight weeks.

When the researchers knocked the ZMYND11 gene down in an osteosarcoma cell line, they found 268 genes had increased expression while 370 genes were down-regulated. Further analysis showed some of the activated genes were enriched in small cell lung cancer and other cancer-promoting pathways.

This pointed to a role in both the repression and activation of .

Associated with longer survival for triple-negative breast cancer patients

Gene activation begins when a transcription factor connects with the gene's promoter region. An enzyme called polymerase II then moves along the gene's DNA like a zipper, reading the DNA to produce a strand of RNA, a process called elongation. This ends when the polymerase hits the gene's stop signal.

Since their structural research had shown the ZMYND11/H3.3 combination localized in a gene's DNA rather than its promoter region, the team hypothesized that it fine-tunes during elongation rather than acting as an on-off switch in the gene's promoter region.

Subsequent experiments showed that the polymerase was more active in the gene body when ZMYND11 was suppressed, particularly on that ZMYND11 inhibited.

An analysis of ZMYND11 levels in the tumors of 120 patients showed that those with high levels of the protein had an 80 percent probability of surviving for 10 years while those with low levels had a 50 percent probability.

The researchers are interested in further elucidating the detailed mechanisms by which ZMYND11 controls transcription elongation.

"Although we know that ZMYND11 controls RNA polymerase II travel ratio in the gene body, we still don't know how this protein, which does not physically interact with polymerase II, actually achieves this regulation," Shi said.

"The next thing to do is to generate a knockout mouse model for further in vivo analysis, as the ultimate goal of our research is to move from bench to bedside, and generating a mouse model is a key step during this long journey," Shi said.

Explore further: Metabolic protein wields phosphate group to activate cancer-promoting genes

Related Stories

Metabolic protein wields phosphate group to activate cancer-promoting genes

August 16, 2012
A metabolic protein that nourishes cancer cells also activates tumor-promoting genes by loosening part of the packaging that entwines DNA to make up chromosomes, a team led by scientists at The University of Texas MD Anderson ...

Scaffolding protein promotes growth and metastases of epithelial ovarian cancer

April 7, 2014
Researchers from Fox Chase Cancer Center have shown that NEDD9, a scaffolding protein responsible for regulating signaling pathways in the cell, promotes the growth and spread of epithelial ovarian cancer.

Regulator of gene expression responsible for the progression of breast cancer

February 28, 2014
Yale Cancer Center researchers have identified a regulator of gene expression that is responsible for the progression of breast cancer and its metastasis to the lung. The study appears online in Cell Reports.

Could far-flung mutations in the genome activate cancer-causing genes? Ask an expert

March 20, 2014
Stowers Institute Investigator, Ali Shilatifard, Ph.D., will take center stage at a Meet-the-ExpertSession at the 2014 Annual Meeting of the American Association for Cancer Research (AACR) being held April 5th-9th in San ...

Protein linked to invasive spread of triple-negative breast cancer may lead to targeted therapies

February 26, 2014
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of the disease and affects almost one in seven of the 1.5 million women diagnosed with breast cancer worldwide each year. TNBC tumors are missing three ...

Some breast cancer tumors hijack patient epigenetic machinery to evade drug therapy

March 26, 2014
A breast cancer therapy that blocks estrogen synthesis to activate cancer-killing genes sometimes loses its effectiveness because the cancer takes over epigenetic mechanisms, including permanent DNA modifications in the patient's ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.