Bacterial adaptation contributes to pneumococcal threat in sickle cell disease patients

May 23, 2014 by Carrie Strehlau, St. Jude Children's Research Hospital

(Medical Xpress)—Researchers have identified differences in the genetic code of pneumococcal bacteria that may explain why it poses such a risk to children with sickle cell disease and why current vaccines don't provide better protection against the infection. St. Jude Children's Research Hospital scientists led the study, which appeared earlier this month in the journal Cell Host & Microbe.

The findings will aid efforts to improve vaccine effectiveness and inform research into new ways to protect young patients from life-threatening pneumococcal infections that can lead to pneumonia, meningitis, bloodstream infections and other problems. Despite advances in preventive care, including vaccination and prophylactic antibiotic therapy, pneumococcal infections still pose a serious health risk to children with sickle cell disease, who are at a much greater risk of possibly fatal infection than are members of the general public.

The results followed whole genome sequencing of hundreds of pneumococcal bacteria collected from the public and patients with sickle cell disease. The genome is carried in the DNA molecule and includes the instructions necessary to assemble and sustain life.

The analysis showed the bacteria have adapted to sickle cell patients, including measures aimed at preventing infection. As a result, disease-causing strains of the bacteria differ in children with and without sickle cell disease. For example, the pneumococcal strains collected from sickle cell patients in this study differed from the 13 pneumococcal strains included in the current vaccine recommended for children age 5 and younger.

"The results help explain why current vaccines haven't been as successful at protecting children with sickle cell disease from pneumococcal infections as they have in protecting other children," said Joshua Wolf, M.D., an assistant member of the St. Jude Department of Infectious Diseases and one of the study's lead authors. The other first authors are Robert Carter, Ph.D., of the St. Jude Computational Biology department, and Tim van Opijnen, formerly of Tufts University School of Medicine, Boston, and now of Boston College.

Work is already underway on vaccines that take a different approach to priming the disease-fighting immune system to protect high-risk groups, including children with sickle cell disease, said the study's corresponding author, Jason Rosch, Ph.D., an assistant member of the St. Jude Infectious Diseases department. "These results will help guide vaccine design going forward," he said.

Sickle cell disease is caused by an inherited mutation in the gene that carries instructions for making hemoglobin. That is the protein red blood cells use to carry oxygen. The mutation leaves red blood cells prone to the sickled shape that gives the disease its name and is also responsible for the episodes of intense pain, organ damage and other problems associated with the life-shortening disease. About 300,000 infants are born with sickle cell disease each year, making it the world's most common genetic disorder.

For this study, scientists compared the genomes of 322 pneumococcal bacteria collected from sickle cell patients between 1994 and 2011 to DNA from 327 strains obtained from individuals without sickle cell disease.

The analysis revealed that over time, the genomes of bacteria isolated from sickle cell patients shrank as genes and the corresponding DNA were discarded or combined. A comparison of the bacterial genomes from individuals with and without sickle cell disease suggested the changes reflected bacterial adaptation to their sickle cell host and contributed to the bacteria's ability to persist despite advances in preventive care.

Using a technique called transposon sequencing (Tn-seq), researchers showed that the bacteria's ability to cause widespread infection in mice with and without sickle cell disease was dramatically affected by changes in 60 different bacterial genes. The results demonstrated that bacteria faced different conditions in animals with and without sickle cell disease.

When researchers checked those same genes in bacteria isolated from sickle cell patients, they found six that were missing or altered in a significant percentage of samples. The list included genes involved in transporting iron into bacteria, bacterial metabolism and other processes that are likely altered in patients with sickle cell disease.

"We demonstrated that genes necessary to cause disease in the general public are expendable in patients with sickle cell disease," Rosch said.

The same methods used in this study could also be used to better understand the genetics behind other pneumococcal high-risk groups, including in individuals who are past retirement age or are obese.

Explore further: Sickle cell disease, sickle cell trait are not the same

Related Stories

Sickle cell disease, sickle cell trait are not the same

December 28, 2012
(HealthDay)—Both sickle cell disease and the condition known as sickle cell trait are genetic blood diseases: You're born with one or the other because of the genes inherited from your parents. Beyond that, the two conditions ...

New tool helps young adults with sickle cell disease in the transition to adult care

March 31, 2014
Child and adolescent hematologists at Boston Medical Center (BMC) have developed a tool to gauge how ready young adults with sickle cell disease are for a transition into adult care. In a new article for the Journal of Pediatric ...

Sickle cell trait in African-American dialysis patients affects dosing of anemia drugs

January 23, 2014
The presence of sickle cell trait among African Americans may help explain why those on dialysis require higher doses of an anemia medication than patients of other ethnicities, according to a study appearing in an upcoming ...

Hemin and sickle cell disease-associated acute chest syndrome development

October 1, 2013
Acute chest syndrome (ACS) is a complication of sickle cell disease that is characterized by sudden pain and difficulty breathing. Sickle cell disease can also cause red blood cells to suddenly breakdown and release their ...

Low levels of oxgen, nitric oxide worsen sickle cell disease

March 20, 2014
Low levels of both oxygen and the powerful blood vessel dilator nitric oxide appear to have an unfortunate synergy for patients with sickle cell disease, researchers report.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.