Discovery links rare, childhood neurodegenerative diseases to common problem in DNA repair

May 9, 2014, St. Jude Children's Research Hospital
Peter McKinnon, Ph.D., is a member of the St. Jude Children's Research Hospital Department of Genetics. Credit: Peter Barta, St. Jude Children's Research Hospital

St. Jude Children's Research Hospital scientists studying two rare, inherited childhood neurodegenerative disorders have identified a new, possibly common source of DNA damage that may play a role in other neurodegenerative diseases, cancer and aging. The findings appear in the current issue of the scientific journal Nature Neuroscience.

Researchers showed for the first time that an enzyme required for normal DNA functioning causes DNA damage in the developing brain. DNA is the molecule found in nearly every cell that carries the instructions needed to assemble and sustain life.

The enzyme is topoisomerase 1 (Top1). Normally, Top1 works by temporarily attaching to and forming a short-lived molecule called a Top1 cleavage complex (Top1cc). Top1ccs cause reversible breaks in one strand of the double-stranded DNA molecule. That prompts DNA to partially unwind, allowing cells to access the DNA molecule in preparation for cell division or to begin production of the proteins that do the work of cells.

Different factors, including the free radicals that are a byproduct of oxygen metabolism, result in Top1ccs becoming trapped on DNA and accumulating in cells. This study, however, is the first to link the buildup to disease. The results also broaden scientific understanding of the mechanisms that maintain brain health.

Investigators made the connection between DNA damage and accumulation of Top1cc while studying DNA repair problems in the rare neurodegenerative disorders ataxia telangiectasia (A-T) and spinocerebellar ataxia with axonal neuropathy 1(SCAN1). The diseases both involve progressive difficulty with walking and other movement. This study showed that A-T and SCAN1 also share the buildup of Top1ccs as a common mechanism of DNA damage. A-T is associated with a range of other health problems, including an increased risk of leukemia, lymphoma and other cancers.

"We are now working to understand how this newly recognized source of DNA damage might contribute to tumor development or the age-related DNA damage in the brain that is associated with neurodegenerative disorders like Alzheimer's disease," said co-corresponding author Peter McKinnon, Ph.D., a member of the St. Jude Department of Genetics. The co-corresponding author is Sachin Katyal, Ph.D., of the University of Manitoba Department of Pharmacology and Therapeutics and formerly of St. Jude.

A-T and SCAN1 are caused by mutations in different enzymes involved in DNA repair. Mutations in the ATM protein lead to A-T. Alterations in the Tdp1 protein cause SCAN1.

Working in nerve cells growing in the laboratory and in the nervous system of specially bred mice, researchers showed for the first time that ATM and Tdp1 work cooperatively to repair breaks in DNA. Scientists also demonstrated how the proteins accomplish the task.

The results revealed a new role for ATM in repairing single-strand DNA breaks. Until this study, ATM was linked to double-strand DNA repair. ATM was also known to work exclusively as a protein kinase. Kinases are enzymes that use chemicals called phosphate groups to regulate other proteins.

Scientists reported that when Top1ccs are trapped ATM functions as a protein kinase and alert cells to the DNA damage. But researchers found ATM also serves a more direct role by marking the trapped Top1ccs for degradation by the protein complex cells use to get rid of damaged or unnecessary proteins. ATM accomplishes that task by promoting the addition of certain proteins called ubiquitin and SUMO to the Top1cc surface.

Tdp1 then completes the DNA-repair process by severing the chemical bonds that tether Top1 to DNA.

Mice lacking either Atm or Tdp1 survived with apparently normal neurological function. But compared to normal mice, the animals missing either protein had elevated levels of Top1cc. Those levels rose sharply during periods of rapid brain development and in response to radiation, oxidation and other factors known to cause breaks in DNA.

When researchers knocked out both Atm and Tdp1, Top1cc accumulation rose substantially as did a form of programmed cell death called apoptosis. Investigators reported that apoptosis was concentrated in the developing brain and few mice survived to birth. McKinnon said the results add to evidence that the brain is particularly sensitive to DNA damage.

Researchers then used the anti-cancer drug topotecan to link elevated levels of Top1cc to the cell death and other problems seen in mice lacking Atm and Tdp1. Topotecan works by trapping Top1ccs in tumor cells, resulting in the DNA damage that triggers apoptosis. Investigators showed that the impact of Top1cc accumulation was strikingly similar whether the cause was topotecan or the loss of Atm and Tdp1.

Explore further: Unravelling nerve-cell death in rare children's disease

Related Stories

Unravelling nerve-cell death in rare children's disease

March 25, 2014
A team of scientists, led by Stuart Lipton, M.D., Ph.D., professor and director of the Neuroscience and Aging Research Center at Sanford-Burnham Medical Research Institute (Sanford-Burnham), recently discovered why cerebellar ...

Mechanism of damaged DNA mutation identified

January 7, 2014
A team led by KAIST Department of Biological Sciences' Professor Kwang-wook Choi and Dr. Seong-tae Hong has successfully investigated the operational mechanism of the protein ATM (Ataxia telangiectasia mutated), an essential ...

Protein prevents DNA damage in the developing brain and might serve as a tumor suppressor

April 23, 2012
St. Jude Children's Research Hospital scientists have rewritten the job description of the protein TopBP1 after demonstrating that it guards early brain cells from DNA damage. Such damage might foreshadow later problems, ...

Research shows breast cancer gene affects brain development

March 18, 2014
(Medical Xpress)—The BRCA1 gene, known for its role in suppressing the growth of breast and ovarian tumors, could be necessary for brain development. In a study appearing in the Proceedings of the National Academy of Sciences, ...

Detector of DNA damage: Structure of a repair factor revealed

June 19, 2012
Double-stranded breaks in cellular DNA can trigger tumorigenesis. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich, Germany, have determined the structure of a protein involved in the repair and signaling ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.