A form of immune therapy might be effective for multiple myeloma

May 12, 2014

A new study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) provides evidence that genetically modifying immune cells might effectively treat multiple myeloma, a disease that remains incurable and will account for an estimated 24,000 new cases and 11,100 deaths in 2014.

The researchers modified a type of human immune cell – called T lymphocytes, or T – to target a molecule called CS1, which is found on more than 95 percent of myeloma cells, and to kill the cells. The researchers grew the modified cells in the lab to increase their numbers and then injected them into an animal model where they again killed human myeloma cells.

The findings were published in the journal Clinical Cancer Research.

"Despite current drugs and use of bone marrow transplantation, multiple myeloma is still incurable, and almost all patients eventually relapse," says co-principal investigator and multiple myeloma specialist Craig Hofmeister, MD, MPH, assistant professor of medicine and a member of the OSUCCC – James Translational Therapeutics Program.

"This study presents a novel strategy for treating multiple myeloma, and we hope to bring it to patients as part of a phase I clinical trial as soon as possible," Hofmeister says.

"In particular, our study shows that we can modify T lymphocytes to target CS1, and that these cells efficiently destroy human multiple myeloma cells," says principal investigator Jianhua Yu, PhD, assistant professor of medicine and a member of the OSUCCC – James Leukemia Research Program.

"An important possible advantage to this approach is that these therapeutic T cells have the potential to replicate in the body, and therefore they might suppress tumor growth and prevent relapse for a prolonged period," Yu says.

For this study, Yu, Hofmeister and their colleagues used cell lines and fresh myeloma cells from patients to produce genetically engineered T cells with a receptor that targets CS1. The researchers then tested the capacity of the modified cells to kill human multiple myeloma cells in laboratory studies and an animal model.

The study's key technical findings include:

  • Compared to control T cells, the modified T cells better recognized cells that overexpressed CS1, and they became more activated following the recognition;
  • The researchers successfully modified fresh T cells from patients and showed that the cells can be grown (expanded) in the lab, and that they efficiently recognized and eradicated ;
  • In animal models, the modified T cells greatly reduced the tumor burden and prolonged overall survival: All mice that received the modified T cells were alive 44 days after treatment versus 29 percent and 17 percent of the study's two control groups.

Explore further: New myeloma-obesity research shows drugs can team with body's defenses

More information: In early 2014, Ohio State cancer researchers Yu, Hofmeister and colleagues published a related study in the journal Leukemia (vol 28, pages 917) on CS1-targeted natural killer cells.

Related Stories

New myeloma-obesity research shows drugs can team with body's defenses

May 2, 2014
Obesity increases the risk of myeloma, a cancer of plasma cells that accumulate inside the bones.

New combination therapy developed for multiple myeloma

May 1, 2014
Each year, more than 25,000 Americans are diagnosed with multiple myeloma, a form of blood cancer that often develops resistance to therapies. However, researchers at Virginia Commonwealth University Massey Cancer Center ...

Research team uncovers root cause of multiple myeloma relapse

September 18, 2013
Researchers have discovered why multiple myeloma, a difficult to cure cancer of the bone marrow, frequently recurs after an initially effective treatment that can keep the disease at bay for up to several years.

Cancer researchers discover root cause of multiple myeloma relapse

September 9, 2013
Clinical researchers at Princess Margaret Cancer Centre have discovered why multiple myeloma, an incurable cancer of the bone marrow, persistently escapes cure by an initially effective treatment that can keep the disease ...

Researchers harness the immune system to improve stem cell transplant outcomes

October 1, 2012
A novel therapy in the early stages of development at Virginia Commonwealth University Massey Cancer Center shows promise in providing lasting protection against the progression of multiple myeloma following a stem cell transplant ...

Multiple myeloma study uncovers genetic diversity within tumors

January 13, 2014
The most comprehensive genetic study to date of the blood cancer multiple myeloma has revealed that the genetic landscape of the disease may be more complicated than previously thought. Through results published in Cancer ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.