New combination therapy developed for multiple myeloma

May 1, 2014
This is Steven Grant, M.D., Shirley Carter Olsson and Sture Gordon Olsson Chair in Cancer Research, associate director for translational research and program co-leader of Developmental Therapeutics at VCU Massey Cancer Center. Credit: VCU Massey Cancer Center

Each year, more than 25,000 Americans are diagnosed with multiple myeloma, a form of blood cancer that often develops resistance to therapies. However, researchers at Virginia Commonwealth University Massey Cancer Center are reporting promising results from laboratory experiments testing a new combination therapy that could potentially overcome the resistance hurdle.

While several drugs are effective against multiple myeloma, including the proteasome inhibitor bortezomib, multiple myeloma cells are often able to survive by increasing the production of a protein known as Mcl-1. Mcl-1 regulates a number of processes that promote cell survival and has been implicated in resistance to anti-myeloma drugs that were initially effective. However, a team of researchers led by Xin-Yan Pei, M.D., Ph.D., and Steven Grant, M.D., recently published the findings of a study in the journal PLoS ONE demonstrating that a novel drug combination both reduces Mcl-1 expression and disrupts its interactions with other proteins to effectively kill multiple myeloma cells. The therapy combines a type of drug known as a Chk1 inhibitor with another called a MEK inhibitor. Chk1 inhibitors prevent cells from arresting in stages of the cell cycle that facilitate the repair of DNA damage, while MEK inhibitors prevent cells from activating a variety of proteins that regulate DNA repair processes while promoting the accumulation of pro-death proteins.

"This research builds on our previous studies that showed exposing multiple myeloma and leukemia cells to Chk1 inhibitors activated a protective response through the Ras/MEK/ERK signaling pathway," says Pei, instructor in the Department of Internal Medicine at the VCU School of Medicine. "By combining a Chk1 inhibitor with a MEK inhibitor, we have developed one of only a limited number of strategies shown to circumvent therapeutic resistance caused by high expressions of Mcl-1."

In laboratory experiments, the scientists enforced overexpression of Mcl-1 in human multiple myeloma cells. They found that this caused the cells to become highly resistant to bortezomib, but it failed to protect them from the Chk1/MEK inhibitor regimen. Additionally, the was able to completely overcome resistance due to microenvironmental factors associated with increased expression of Mcl-1. A cell's microenvironment consists of surrounding cells and the fluids in which they reside, and the communication between cancer cells and their surrounding cells can significantly impact resistance. Mcl-1 plays a key role in this communication by facilitating events that promote cancer cell survival.

"Not only was the combination therapy effective against multiple myeloma , it notably did not harm normal , raising the possibility of therapeutic selectivity," says Grant, the study's lead investigator and Shirley Carter Olsson and Sture Gordon Olsson Chair in Cancer Research, associate director for translational research and program co-leader of Developmental Therapeutics at VCU Massey Cancer Center. "We are hopeful that this research will lead to better therapies for multiple myeloma, and help make current therapies more effective by overcoming resistance caused by Mcl-1."

The researchers have started initial discussions with clinical investigators and drug manufacturers with hopes of developing a clinical trial testing a combination of Chk1 and MEK inhibitors in patients with refractory . It is too early to estimate when the trial will open.

Explore further: Scientists defeat hurdle to eradicating inactive multiple myeloma cells

More information: www.plosone.org/article/info%3 … journal.pone.0089064

Related Stories

Scientists defeat hurdle to eradicating inactive multiple myeloma cells

November 14, 2011
Researchers at Virginia Commonwealth University Massey Cancer Center have developed a novel treatment strategy for multiple myeloma that delivers a deadly one-two blow to kill even the most inactive, or cytokinetically quiescent, ...

Experimental drug combination selectively destroys lymphoma cells

February 6, 2013
Laboratory experiments conducted by scientists at Virginia Commonwealth University Massey Cancer Center suggest that a novel combination of the drugs ibrutinib and bortezomib could potentially be an effective new therapy ...

Scientists pinpoint protein that could improve small cell lung cancer therapies

April 22, 2014
Approximately 15 percent of all lung cancers are small cell lung cancers (SCLC), which grow rapidly and often develop resistance to chemotherapy. However, researchers at Virginia Commonwealth University Massey Cancer Center ...

Scientists devise new strategy to destroy multiple myeloma

August 14, 2012
Researchers at Virginia Commonwealth University Massey Cancer Center are reporting promising results from laboratory and animal experiments involving a new combination therapy for multiple myeloma, the second most common ...

Experimental drug could enhance multiple myeloma and myeloid leukemia therapies

February 18, 2014
A pre-clinical study led by Virginia Commonwealth University Massey Cancer Center and Department of Internal Medicine researchers suggests that an experimental drug known as dinaciclib could improve the effectiveness of certain ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.