Experimental drug could enhance multiple myeloma and myeloid leukemia therapies

February 18, 2014, Virginia Commonwealth University

A pre-clinical study led by Virginia Commonwealth University Massey Cancer Center and Department of Internal Medicine researchers suggests that an experimental drug known as dinaciclib could improve the effectiveness of certain multiple myeloma and myeloid leukemia therapies. The study, recently published in the journal Molecular Cancer Therapeutics, showed that dinaciclib disrupted a cell survival mechanism known as the unfolded protein response (UPR). Without the UPR, multiple myeloma and myeloid leukemia cells were unable to combat damage caused by some anti-cancer agents.

"Although dinaciclib has shown promising pre-clinical activity against a variety of tumor , and is currently undergoing phase I/II clinical trials in several malignancies, the mechanisms responsible for its anti-tumor activity are not fully understood," says the study's lead investigator Steven Grant, M.D., associate director for translational research, co-leader of the Developmental Therapeutics research program and Shirley Carter Olsson and Sture Gordon Olsson Chair in Oncology Research at Massey. "Our research highlights a potentially new mechanism of dinaciclib action, and raises the possibility that this agent could be a useful addition to current and myeloid leukemia therapies."

Dinaciclib is a member of a class of drugs known as cyclin-dependent kinase (CDK) inhibitors. CDKs regulate a series of events known as the cell cycle, or cell-division cycle, that lead to the division and duplication of cells. In many cancers, CDKs are overactive or CDK-inhibiting proteins are not functional, which results in the unregulated proliferation of cancer cells. Laboratory observations from this study suggest that two specific CDKs, CDK1 and CDK5, play key roles in regulating the UPR by helping to control the production and accumulation of a protein known as X-box binding pretein-1 (XBP-1).

The spliced form of XBP-1 (XBP-1s) helps regulate the expression of genes critical to cellular stress responses. External stressors, including certain anti-cancer agents, can cause mis-folded proteins to accumulate in the endoplasmic reticulum (ER), an interconnected network of sacs and tubules that manufacture, process and transport a variety of compounds important for cell survival. These stressors can also cause XBP-1s to accumulate in the cell's nucleus, which promotes the UPR and helps cells withstand the damaging effects of mis-folded proteins. The scientists discovered that dinaciclib, by interfering with UPR activation, caused multiple myeloma and myeloid leukemia cells to initiate a form of cell suicide known as apoptosis when exposed to agents that induced ER stress.

"These findings build on a long history of work in our laboratory investigating mechanisms by which respond to environmental stresses," says Grant. "We intend to continue investigating ways in which dinaciclib and other CDK inhibitors might be used to disrupt the UPR and potentially improve the effectiveness of certain agents for the treatment of multiple myeloma or ."

Explore further: Scientists devise new strategy to destroy multiple myeloma

More information: The full manuscript of the study is available online at: mct.aacrjournals.org/content/e … 3-0714.full.pdf+html

Related Stories

Scientists devise new strategy to destroy multiple myeloma

August 14, 2012
Researchers at Virginia Commonwealth University Massey Cancer Center are reporting promising results from laboratory and animal experiments involving a new combination therapy for multiple myeloma, the second most common ...

New drug combination therapy developed to treat leukemia

April 17, 2013
A new, pre-clinical study by researchers at Virginia Commonwealth University Massey Cancer Center suggests that a novel drug combination could lead to profound leukemia cell death by disrupting the function of two major pro-survival ...

Scientists defeat hurdle to eradicating inactive multiple myeloma cells

November 14, 2011
Researchers at Virginia Commonwealth University Massey Cancer Center have developed a novel treatment strategy for multiple myeloma that delivers a deadly one-two blow to kill even the most inactive, or cytokinetically quiescent, ...

Scientists see potential in novel leukemia treatment

May 22, 2012
Scientists at Virginia Commonwealth University Massey Cancer Center may be one step closer to developing a new therapy for acute myeloid leukemia (AML) after discovering that the targeted agents obatoclax and sorafenib kill ...

Pathway identified in human lymphoma points way to new blood cancer treatments

November 21, 2012
A pathway called the "Unfolded Protein Response," or UPR, a cell's way of responding to unfolded and misfolded proteins, helps tumor cells escape programmed cell death during the development of lymphoma.

Recommended for you

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

FDA approves first drug for tumors tied to breast cancer genes

January 12, 2018
(HealthDay)—The U.S. Food and Drug Administration on Friday approved the first drug aimed at treating metastatic breast cancers linked to the BRCA gene mutation.

Breast cancer gene does not boost risk of death: study

January 12, 2018
Young women with the BRCA gene mutation that prompted actress Angelina Jolie's pre-emptive and much-publicised double mastectomy are not more likely to die after a breast cancer diagnosis, scientists said Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.