Ovarian cancer cells are more aggressive on soft tissues

May 8, 2014
Professor Michelle Dawson and graduate student Daniel McGrail used traction force microscopy to measure the forces exerted by cancer cells on soft and stiff surfaces. Credit: Rob Felt, Georgia Institute of Technology

When ovarian cancer spreads from the ovaries it almost always does so to a layer of fatty tissue that lines the gut. A new study has found that ovarian cancer cells are more aggressive on these soft tissues due to the mechanical properties of this environment. The finding is contrary to what is seen with other malignant cancer cells that seem to prefer stiffer tissues.

"What we found is that there are some that respond to softness as opposed to stiffness," said Michelle Dawson, an assistant professor in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology. "Ovarian cancer cells that are highly metastatic respond to soft environments by becoming more aggressive."

Ovarian cancer cells spread, or metastasize, by a different method than other cancer cells. Breast cancer cells, for example, break off from a solid tumor and flow through the blood until they arrest in small blood vessels. The cancer cells then penetrate the vessel surface to form a tumor. Because are in the abdomen, these cancer cells are shed into the surrounding fluid and not distributed through the blood. They must be able to adhere directly to the that lines the gut, called the omentum, to begin forming a tumor. The new study discovered details about how seem to prefer the of this soft tissue.

The study was published in a recent advance online edition of the Journal of Cell Science and was sponsored by the National Science Foundation and the Georgia Tech and Emory Center for Regenerative Medicine.

The research team, led by Daniel McGrail, a graduate student in the Dawson lab, found that cells in vitro were more adherent to a layer of soft fat cells than a layer of stiffer bone cells, and that this behavior was also repeated using gels of similar rigidities.

"All the behaviors that we associate with on these more rigid environments are flipped for ovarian cancer cells," Dawson said.

After adhering to these soft surfaces, metastatic ovarian cancer cells became more aggressive. Their proliferation increased and they were less responsive to chemotherapeutics. The ovarian cancer cells were also more motile on soft surfaces, moving nearly twice as fast as on rigid surfaces. The team also found that less aggressive cells that do not metastasize do not exhibit any of these changes.

The researchers used techniques that haven't been traditionally used in the study of ovarian cancer. They measured the force exerted by the cells by tracking the displacement of beads in the environment around the cells. The researchers found that the increased their traction forces – used to generate motion – by three-fold on soft surfaces, but no such change was present in the less aggressive cells.

"We think the behavior that metastatic ovarian cancer cells exert on these soft surfaces is representative of the mechanical tropism that they have for these softer tissues in the gut," Dawson said.

In future work, the researchers will investigate whether ovarian cancer cells have some natural inclination towards this uniquely more in softer environments.

"We're trying to find out whether there is some internal programming that leads to this aggressive behavior," Dawson said.

Explore further: Squeezing ovarian cancer cells to predict metastatic potential

More information: Daniel J. McGrail, et al., "The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho-ROCK pathway." (Journal of Cell Science, 2014). dx.doi.org/10.1242/jcs.144378

Related Stories

Squeezing ovarian cancer cells to predict metastatic potential

October 10, 2012
(Medical Xpress)—New Georgia Tech research shows that cell stiffness could be a valuable clue for doctors as they search for and treat cancerous cells before they're able to spread. The findings, which are published in ...

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Researchers find way to decrease chemoresistance in ovarian cancer

May 2, 2014
Inhibiting enzymes that cause changes in gene expression could decrease chemotherapy resistance in ovarian cancer patients, researchers at Georgia State University and the University of Georgia say.

Fat cells in abdomen fuel spread of ovarian cancer

October 30, 2011
A large pad of fat cells that extends from the stomach and covers the intestines provides nutrients that promote the spread and growth of ovarian cancer, reports a research team based at the University of Chicago in the journal ...

Resistance is futile: Researchers identify gene that mediates cisplatin resistance in ovarian cancer

April 15, 2013
Platinum compounds, such as cisplatin and carboplatin, induce DNA cross-linking, prohibiting DNA synthesis and repair in rapidly dividing cells. They are first line therapeutics in the treatment of many solid tumors, but ...

Glutamine ratio is key ovarian cancer indicator

May 5, 2014
A Rice University-led analysis of the metabolic profiles of hundreds of ovarian tumors has revealed a new test to determine whether ovarian cancer cells have the potential to metastasize, or spread to other parts of the body. ...

Recommended for you

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Scientists restore tumor-fighting structure to mutated breast cancer proteins

September 20, 2017
Scientists at the Virginia Tech Carilion Research Institute have successfully determined the full architecture of the breast cancer susceptibility protein (BRCA1) for the first time. This three-dimensional information provides ...

Researchers identify new target, develop new drug for cancer therapies

September 20, 2017
Opening up a new pathway to fight cancer, researchers at the University of Pennsylvania have found a way to target an enzyme that is crucial to tumor growth while also blocking the mechanism that has made past attempts to ...

Brain cancer growth halted by absence of protein, study finds

September 20, 2017
The growth of certain aggressive brain tumors can be halted by cutting off their access to a signaling molecule produced by the brain's nerve cells, according to a new study by researchers at the Stanford University School ...

New clinical trial explores combining immunotherapy and radiation for sarcoma patients

September 20, 2017
University of Maryland School of Medicine researchers are investigating a new approach to treat high-risk soft-tissue sarcomas by combining two immunotherapy drugs with radiation therapy to stimulate the immune system to ...

Targeted antibiotic use may help cure chronic myeloid leukaemia

September 19, 2017
The antibiotic tigecycline, when used in combination with current treatment, may hold the key to eradicating chronic myeloid leukaemia (CML) cells, according to new research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.