Scientists design a molecule that blocks cancer growth in mice

May 13, 2014

A team of researchers from USC and NYU has developed and patented a small molecule that interferes with cancer progression with minimal side effects.

The molecule prevents two critical proteins from interacting by mimicking the surface topography of one protein – like wearing a mask – which tricks the other protein into binding with it. This stops a so-called "transcription factor" that controls the transcription of genetic information. That transcription factor is what would have created an aberrant gene expression, contributing to the cancer growth.

Because of the molecule's precision in targeting the protein interaction, the treatment does not appear to produce any side effects when tested animal tumor models.

"This complex represents one of the key focal points in the tumor-promotion," said Bogdan Olenyuk, assistant professor of pharmacology and pharmaceutical sciences at the USC School of Pharmacy, and one of two corresponding authors on a paper about the work. "However, targeting it for therapeutic intervention was a major challenge, since transcription factors do not possess the necessary topographical structures to make them good targets for mimicking drugs.

Instead, the team focused on blocking one of the transcription factor's binding partners – a large protein with complex topography that makes it an easier, more "druggable" target.

Teams of researchers from USC and NYU collaborated on the study. Olenyuk led the USC group, which included graduate students Ivan Grishagin and researcher Hanah Mesallati. Paramjit Arora, professor of chemistry at NYU and co-corresponding author on the paper, lead the NYU group, which included graduate student Brooke Bullock Lao and Thomas Brewer.

Their study appears this week in the Proceedings of the National Academy of Sciences (PNAS). The researchers have filed patent applications for the new design, which has already attracted the interest of several pharmaceutical companies.

Targeting the protein-protein interactions has been a longstanding goal of researchers in the field of cancer biology, and became the focus of Olenyuk's research since 2008.

"After completing my postdoctoral project in with my mentor Peter Dervan at Caltech and our collaborator Bill Kaelin at Harvard Medical School, I decided to make a major focus of my research on an interdisciplinary problem of targeting oncogenic with designed drug-like molecules," he said.

The researchers used Rosetta Software, a design software for molecular structures, to guide their design. They then designed a strategy to graft the specially textured surface onto a stable scaffold.

So far, the molecules have only been tested animal models, but the researchers plan to take the appropriate steps to prepare for the next step – to translate these compounds into clinic.

Explore further: Genome study identifies three possible drug candidates for autoimmune diseases

More information: In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics, www.pnas.org/cgi/doi/10.1073/pnas.1402393111

Related Stories

Genome study identifies three possible drug candidates for autoimmune diseases

May 2, 2014
(Medical Xpress)—New pharmaceuticals to fight autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis and psoriasis, may be identified more effectively by adding genome analysis to standard drug screening, ...

Investigators discover how key protein enhances memory and learning

May 2, 2014
Case Western Reserve researchers have discovered that a protein previously implicated in disease plays such a positive role in learning and memory that it may someday contribute to cures of cognitive impairments. The findings ...

'Undruggable' may be druggable: A new target for cancer drug development

June 17, 2013
Harvard Stem Cell Institute (HSCI) researchers have identified in the most aggressive forms of cancer a gene known to regulate embryonic stem cell self-renewal, beginning a creative search for a drug that can block its activity.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.