Mixing stem cells with clay to regenerate human tissue

May 2, 2014, University of Southampton
Mixing stem cells with clay to regenerate human tissue
Gels made from clay nano particles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Gels made from clay could provide an environment that would stimulate stem cells to regenerate damaged tissues such as bone, skin, heart, spinal cord, liver, pancreas and cornea.

Researchers at the University of Southampton believe that clay particles' ability to bind to could be used to stimulate the stem cell regeneration process.

Dr Jon Dawson, who is leading the research, explains: "Clay particles encourage molecules to bind to them. This interaction is now routinely harnessed in the design of tablets to carefully control the release and action of a drug. We will use this mechanism to see if we can encourage to grow new tissue."

The project, funded by a £1.4m grant from the Engineering and Physical Sciences Research Council (EPSRC), aims to create tailormade micro-environments to foster stem cell regeneration. The team will use clay gels both to explore the biological signals necessary to successfully control stem cell behaviour for regeneration and also to provide stem cells with signals to stimulate regeneration in the body.

The approach will first be applied to regenerate bone lost to cancer or hip replacement failure. If successful the same technology may be applied to harness stem cells for the treatment of a whole host of different scenarios, from burn victims to those suffering with diabetes or Parkinson's.

Dr Dawson will be working with Professor Richard Oreffo of the Bone and Joint Research Group at the University of Southampton to explore the application of this technology in orthopaedics. "Fractures and bone loss due to trauma or disease are a significant clinical and socioeconomic problem," Dr Dawson comments. "Clay particles could offer an improved way of stimulating stem cells at the point of injury, which will be better for the patient's recovery."

Dr Dawson believes that the rich electrostatic properties of nano scale clay particles, which are one millionth of a millimetre, could overcome two challenges in the development of stem-cell based regenerative therapies.

The first challenge – to deliver and hold stem cells at the right location in the body – would be met by the ability of clay to self-organise into gels via the electrostatic interactions of the particles with each other. Cells mixed with a low concentration of clay particles gelled in water, can be injected into the body and held in the right place by the gel, eliminating, in many situations, the need for surgery.

Clay particles can also interact with large structural molecules (polymers) which are frequently used in the development of scaffolds, which stem cells grow on. These interactions can greatly improve the scaffold's strength and could be applied to preserve their stability at the site of injury until regeneration is complete.

While several gels and scaffold materials have been designed to deliver and hold stem cells at the site of regeneration, the ability of clay nanoparticles to overcome a second critical hurdle facing stem-cell therapy is what makes them especially exciting.

Dr Dawson says: "The carefully controlled provision of key biological signalling molecules is essential to directing the activity of stem-cells. However, conventional injectable gel materials are often poor at retaining these biological signals at the site of injury – they can hold and deliver cells, but the molecules that stimulate the cells diffuse away when placed in the body. The ability of clay nanoparticles to bind biological molecules presents a unique opportunity to control the local environment at a site of injury or disease to stimulate and control stem-cell driven repair. This is something we are very excited about."

Explore further: Tracking nanodiamond-tagged stem cells

Related Stories

Tracking nanodiamond-tagged stem cells

August 5, 2013
A method that is used to track the fate of a single stem cell within mouse lung tissue is reported in a study published online this week in Nature Nanotechnology. The method may offer insights into the factors that determine ...

Damage control: Recovering from radiation and chemotherapy

April 30, 2014
Researchers at the University of California, San Diego School of Medicine report that a protein called beta-catenin plays a critical, and previously unappreciated, role in promoting recovery of stricken hematopoietic stem ...

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Stem cells from muscle can repair nerve damage after injury, researchers show

March 18, 2014
Stem cells derived from human muscle tissue were able to repair nerve damage and restore function in an animal model of sciatic nerve injury, according to researchers at the University of Pittsburgh School of Medicine. The ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.