Stem cells key to tackling degenerative muscle disease

May 8, 2014
Stem cells: the key to tackling degenerative muscle disease

EU research suggests that the manipulation of stem cells could help to repair damaged muscle tissue. Given the wide range of age-related and degenerative diseases that affect our society today, this could represent a significant breakthrough in healthcare.

Recent advances in EU-funded research, conducted through the ENDOSTEM project, have opened up the possibility that we may soon be able to repair damaged tissue by using . This has the potential to improve the quality of life of thousands of people.

What makes stem cells unique is their ability to self-renew; i.e. to divide and produce identical copies over and over again. This makes them different to specialised cells - like - which cannot replicate themselves and can therefore be seriously damaged by disease or injury. While stem cells are found in almost every tissue, they are quite rare; in for example, they comprise about 5% of all nuclei.

The ENDOSTEM project, which has received nearly EUR 12 million in EU funding, sought to find new ways of stimulating stem cells located in , with the intention of encouraging self-repair. Several project partners have identified the existence of different stem cells that co-exist in skeletal muscle, which could provide a novel source of cells to be exploited to regenerate dystrophic muscles.

Another key focus has been to develop ways of reproducing the physiological signals that facilitate the mobilisation of stem cells. Certain molecules - such as nitric oxide - have been found to enable the physiological activation of stem cells, which can then be used to repair damaged tissues. The ENDOSTEM team has worked to identify the correct signal needed, and then made sure that this can be delivered to the stem cell at a time when the tissue is damaged.

Preclinical studies on selected compounds have been carried out, with two now at the clinical testing stage. These compounds are the combination of nitric oxide donating molecules with the anti-inflammatory drug ibuprofen, and the histone deacetylase inhibitor Givinostat. A study on a third drug - the antioxidant N-acetyl cysteine - has also been finalised, with a clinical trial expected to start in a few months' time.

The research has potential applications for more common , as well as muscular dystrophy. Muscular dystrophy is a term used to describe a group of genetic disorders that affect different muscles in the body. The condition, which involves the progressive deterioration of , can range from mild to severe. While all types of muscular dystrophy are rare, tens of thousands live with the condition in Europe alone.

One focus of the project has been on cardiac muscle stem cells; in muscular dystrophy, the heart can also be affected. Researchers are confident that better knowledge of how to treat the cardiac-related effects of can be translated to more common cardiac related diseases. The five-year ENDOSTEM project is due for completion at the end of 2014.

Explore further: Progress in stem cell research could advance Muscular Dystrophy treatment

More information: www.endostem.eu/

Related Stories

Progress in stem cell research could advance Muscular Dystrophy treatment

October 25, 2013
A large scale scientific collaboration led by France's Pierre and Marie Curie University and national institute of health and medical research has generated significant advances in treatment for muscular dystrophies by targeting ...

A step closer to muscle regeneration

December 10, 2013
(Medical Xpress)—Muscle cell therapy to treat some degenerative diseases, including Muscular Dystrophy, could be a more realistic clinical possibility, now that scientists have found a way to isolate muscle cells from embryonic ...

Successful transplant of patient-derived stem cells into mice with muscular dystrophy

June 27, 2012
Stem cells from patients with a rare form of muscular dystrophy have been successfully transplanted into mice affected by the same form of dystrophy, according to a new study published today in Science Translational Medicine.

Different cellular mechanisms behind regenerated body parts

November 21, 2013
Scientists at Karolinska Institutet in Sweden have discovered that two separate species of salamander differ in the way their muscles grow back in lost body parts. Their findings on the species-specific solutions, published ...

New research implicates immune system cells in muscle healing

December 6, 2013
Scientists have found that cells known primarily for tempering immune response also exist in injured muscle tissue, an unexpected role for regulatory T cells.

Regenerating muscle in Duchenne muscular dystrophy: Age matters

April 14, 2014
A team of scientists led by Pier Lorenzo Puri, M.D., associate professor at Sanford-Burnham Medical Research Institute (Sanford-Burnham), in collaboration with Fondazione Santa Lucia in Rome, Italy, have published details ...

Recommended for you

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.