Regenerating muscle in Duchenne muscular dystrophy: Age matters

April 14, 2014
HDAC inhibitors (HDACi) promote muscle regeneration in a mouse model of Duchenne Muscular Dystrophy at early stages of disease by targeting fibro-adipogenic progenitors (FAPs). Staining of FAPs from muscles of HDACi-treated young mdx mice reveals presence of differentiated muscle cells (green) at the expense of fat cells (red). Nuclei are stained in blue. Credit: Lorenzo Puri, M.D.

A team of scientists led by Pier Lorenzo Puri, M.D., associate professor at Sanford-Burnham Medical Research Institute (Sanford-Burnham), in collaboration with Fondazione Santa Lucia in Rome, Italy, have published details of how a class of drugs called "HDACis" drive muscle-cell regeneration in the early stages of dystrophic muscles, but fail to work in late stages. The findings are key to furthering clinical development of HDACis for Duchenne muscular dystrophy (DMD), an incurable muscle-wasting disease.

A symphony to rebuild muscle

The research, to be published April 15 in Genes and Development, used mouse models of DMD to show how fibro-adipogenic progenitor cells (FAPs) act like orchestra conductors in the music of regeneration. FAPs sit in the space between and coordinate a complex symphony—receiving the notes that muscle has been damaged and directing muscle stem cells—satellite cells—to rebuild muscle.

"HDACis create an environment conducive for FAPs to direct muscle regeneration—but only during the early stages of DMD progression in mice," said Puri. "At some point, DMD progresses to a pathological point of no return and become permanently resistant to muscle-regeneration cures and to HDACis.

HDACis open the blueprints for muscle regeneration

HDACis stands for histone deacetylase inhibitors. They are epigenetic drugs that work by facilitating the accessibility to the genes that code for muscle proteins by the cell machinery that transcribes the genetic code into proteins. In essence, HDACis open the blueprints for protein manufacturing and instruct FAPs to support muscle regeneration.

In normal wear and tear, FAPs direct stem cells within the muscle to regenerate and repair damaged muscle. In DMD, the persistent breakdown of creates an environment in such disarray that FAP's ability to direct muscle regeneration is compromised—like trying to conduct a symphony with punk rock music in the background.

Collaborating to find a treatment for DMD

Puri, along with his Italian colleagues at Fondazione Santa Lucia, Italfarmaco, and Parent Project Muscular Dystrophy, an advocacy association, are currently developing HDACis for the treatment of DMD – a clinical trial with DMD boys is currently ongoing.

"Our study is important because it provides the rational for the clinical development of HDACis to treat DMD," said Puri. "And, now that we understand the mechanics and sensitivities of the system, we have the rationale and can use new tools to select patients most likely to benefit from HDACIs based on their FAP profile, predict outcomes, and see how long patients should remain on the therapy."

"Duchenne patients and their families rely on important research such as that performed by Dr. Puri," said Debra Miller, Founder of Cure Duchenne, a patient advocacy group. "Our efforts at Cure Duchenne are to support leading scientists in the world to bring life-saving drugs to help this generation of Duchenne boys, and our vision is to cure Duchenne muscular dystrophy. Every added piece of knowledge about the disease brings us closer to realizing our goals."

Explore further: Promoting muscle regeneration in a mouse model of muscular dystrophy

Related Stories

Promoting muscle regeneration in a mouse model of muscular dystrophy

April 1, 2013
Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the protein dystrophin. Dystrophin functions to protect muscle cells from injury and loss of functional dystrophin results ...

Treating Duchenne muscular dystrophy

December 2, 2013
(Medical Xpress)—Reviving a gene which is 'turned down' after birth could be the key to treating Duchenne muscular dystrophy (DMD), an incurable muscle-wasting condition that affects one in every 3,500 boys.

Researchers describe a key mechanism in muscle regeneration

December 19, 2012
Researchers at the Bellvitge Biomedical Research Institute (IDIBELL) have described a new selective target in muscle regeneration. This is the association of alpha-enolase protein and plasmin. The finding could be used to ...

Tamoxifen ameliorates symptoms of Duchenne muscular dystrophy

January 15, 2013
A new study has found that tamoxifen, a well-known breast cancer drug, can counteract some pathologic features in a mouse model of Duchenne muscular dystrophy (DMD). At present, no treatment is known to produce long-term ...

Takeda and UCL to work together to tackle muscle disorders

March 10, 2014
Japanese pharmaceutical company Takeda will work with University College London (UCL) to drive research into tackling muscle disorders, in particular muscular dystrophy.

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.