Study unveils new approach to treating brittle bone disease

May 4, 2014

Researchers at Baylor College of Medicine have identified a new approach to treating brittle bone disease, a congenital disorder that results in fragile bones that break easily.

The study, published in the current issue of the journal Nature Medicine, showed that excessive activity of an important signaling protein in the matrix of the bone called transforming growth factor beta is associated with the cause of the disease.

"There are many genetic causes of brittle in children and adults," said Dr. Brendan Lee, professor of molecular and human genetics at Baylor and a Howard Hughes Medical Institute investigator. "We have discovered many of them but clinicians still cannot easily distinguish the different forms."

Lee said the new study suggested that there may be common mechanisms that cause the decreased quality and quantity of bone in these different forms.

"This identified an important concept in bone disease that while many different can affect the proteins in the (like collagen) they act in a common pathway to cause the bone disease – that is they affect how signaling proteins called transforming beta (TGF) are delivered to cells in the bone," said Lee. "We now have a deeper understanding for how genetic mutations that affect collagen and collagen processing enzymes cause weak bones."

Collagen is the most common protein in the human body, and the four most common types are found in different types of tissues including bone, cartilage, blood vessels, and kidney.

In animal studies, Lee and his colleagues showed that blockade of the TGF proteins using an antibody could restore the quantity of bone in mice with different forms of brittle bone disease.

"This treatment appears even more effective than other existing approaches," said Lee.

There are currently drugs in development to block this pathway in humans, so eventually the work can be translated into human studies, he said.

Existing approaches revolve around symptom management such as prevention of , physical therapy and strengthening drugs, not necessarily medications to target the underlying cause of the disease, he said.

The study is novel because it shows a personalized approach to more effective treatment patients with these forms of .

"We hope this approach will also be useful in more common forms of osteoporosis," said Lee.

Explore further: Gene discoveries give hope against 'Brittle bone' disease

More information: Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta, Nature Medicine, DOI: 10.1038/nm.3544

Related Stories

Gene discoveries give hope against 'Brittle bone' disease

May 8, 2013
(HealthDay)—Mutations in a gene involved in bone development appear to cause certain severe forms of bone loss, a finding that could lead to new therapies for the common bone-thinning disorder osteoporosis, researchers ...

Proper stem cell function requires hydrogen sulfide

April 17, 2014
Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

New treatment for brittle bone disease found

August 9, 2013
A new treatment for children with brittle bone disease has been developed by the University of Sheffield and Sheffield Children's Hospital.

Changes to cartilage linked to bone cancer offers a possible new diagnostic approach

June 17, 2013
(Medical Xpress)—For the first time, researchers from The Wellcome Trust Sanger Institute, the Royal National Orthopaedic Hospital and UCL Cancer Institute, have linked a gene central to the production of cartilage, COL2A1, ...

Identification of a molecule linking bone loss and bone formation

August 1, 2013
Bone integrity requires skeletal remodeling, which involves both bone formation and resorption. It has been previously shown that the formation of new bone is triggered by degradation of older bone. However, it is unknown ...

Not only bone density, but also quality of bone predicts fracture risk

August 5, 2013
In a study carried out at the University of Eastern Finland, bone histomorphometry and infrared spectroscopy revealed abnormal bone properties in children with vertebral fractures and in children after solid organ transplantation. ...

Recommended for you

Researchers find way to convert bad body fat into good fat

September 19, 2017
There's good fat and bad fat in our bodies. The good fat helps burn calories, while the bad fat hoards calories, contributing to weight gain and obesity. Now, new research at Washington University School of Medicine in St. ...

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

Cell-based therapy success could be boosted by new antioxidant

September 19, 2017
Cell therapies being developed to treat a range of conditions could be improved by a chemical compound that aids their survival, research suggests.

Study suggests epilepsy drug can be used to treat form of dwarfism

September 19, 2017
A drug used to treat conditions such as epilepsy has been shown in lab tests at The University of Manchester to significantly improve bone growth impaired by a form of dwarfism.

Research predicts how patients are likely to respond to DNA drugs

September 19, 2017
Research carried out by academics at Northumbria University, Newcastle could lead to improvements in treating patients with diseases caused by mutations in genes, such as cancer, cystic fibrosis and potentially up to 6,000 ...

Urine output to disease: Study sheds light on the importance of hormone quality control

September 18, 2017
The discovery of a puddle of mouse urine seems like a strange scientific "eureka" moment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.