30-year puzzle in breast cancer solved

May 2, 2014
Dr. Christopher Kemp of Fred Hutch's Human Biology Division. Credit: Photo by Bo Jungmayer / Fred Hutch file

In a new study published today in Cell Reports, scientists at the Fred Hutchinson Cancer Research Center demonstrate that mice lacking one copy of a gene called CTCF have abnormal DNA methylation and are markedly predisposed to cancer. CTCF is a very well-studied DNA binding protein that exerts a major influence on the architecture of the human genome, but had not been previously linked to cancer.

Over 30 years ago, frequent loss of one copy of chromosome 16 was first reported in but the gene or genes responsible remained to be identified. Dr. Gala Filippova, staff scientist at Fred Hutch and co-author of the study, originally cloned the human CTCF gene and mapped it to chromosome 16, within the same region that is frequently lost in human cancers. That same year, Dr. Chris Kemp of the Human Biology Division at Fred Hutch, co-authored a paper demonstrating that, in contrast to the predominant "two hit" theory on , it was not necessary to lose both copies, one hit was enough. However, CTCF was ruled out as a candidate on chromosome 16 simply because it did not conform to the "two hit" model.

"In this current study we explored whether loss of just one copy of the CTCF gene could trigger and predispose to tumor development," said Dr. Filippova of Fred Hutch. The study demonstrates that indeed, loss of one copy of CTCF caused large scale epigenetic changes and greatly enhanced tumor formation in multiple tissues. In addition, recent large scale analysis of the human cancer genome revealed that deletions or mutations in CTCF are one of the most common events in breast, endometrial, and other human cancers.

Collectively, these findings indicate that CTCF is major tumor suppressor gene in human cancer and highlights the power of the mouse models to prove that a candidate gene has a function in cancer. These results have implications for understanding the origin of DNA methylation alterations in cancer and suggest that epigenetic instability may both precede and accelerate the emergence of cancer.

"This answers a 30 year riddle in ", said Dr. Kemp. "And it shows once again, as we first showed in 1998, that one hit is enough".

Explore further: Researchers identify fundamental differences between human cancers and genetically engineered mouse models of cancer

Related Stories

Researchers identify fundamental differences between human cancers and genetically engineered mouse models of cancer

December 5, 2013
Researchers from the Fred Hutchinson Cancer Research Center in Seattle, WA have taken a closer look at existing mouse models of cancer, specifically comparing them to human cancer samples. These genetically engineered mouse ...

Identified epigenetic factors associated with an increased risk of developing cancer

April 10, 2014
In 10% of human tumors there is a family history of hereditary disease associated with mutations in identified genes. The best examples are the cases of polyps in the large intestine associated with the APC gene and breast ...

Study provides new insights into an ancient mechanism of mammalian evolution

January 12, 2012
A team of geneticists and computational biologists in the UK today reveal how an ancient mechanism is involved in gene control and continues to drive genome evolution. The new study is published in the journal Cell.

Regulator of gene expression responsible for the progression of breast cancer

February 28, 2014
Yale Cancer Center researchers have identified a regulator of gene expression that is responsible for the progression of breast cancer and its metastasis to the lung. The study appears online in Cell Reports.

Fifty-five genes linked to a powerful tumor suppressor predict breast cancer survival

February 11, 2014
A panel of 55 genes, almost all of which are impacted by the loss of a particular protein, appears to predict if breast cancer will become invasive, leading to poorer survival, researchers at Georgetown Lombardi Comprehensive ...

Linking risk factors and disease origins in breast cancer

November 20, 2013
Researchers from the Geisel School of Medicine at Dartmouth have found that epigenetic changes to DNA are associated with aging in disease-free breast tissues and are further altered in breast tumors. Epigenetic changes describe ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.