3-D computer model may help refine target for deep brain stimulation therapy for dystonia

June 25, 2014

Although deep brain stimulation can be an effective therapy for dystonia – a potentially crippling movement disorder – the treatment isn't always effective, or benefits may not be immediate. Precise placement of DBS electrodes is one of several factors that can affect results, but few studies have attempted to identify the "sweet spot," where electrode placement yields the best results.

Researchers led by investigators at Cedars-Sinai, using a complex set of data from records and imaging scans of patients who have undergone successful DBS implantation, have created 3-D, computerized models that map the brain region involved in dystonia. The models identify an anatomical target for further study and provide information for neurologists and neurosurgeons to consider when planning surgery and making device programming decisions.

"We know DBS works as a treatment for dystonia, but we don't know exactly how it works or why some patients have better, quicker results than others. Patient age, disease duration and other underlying factors have a role, and we believe electrode positioning and device programming are critical, but there is no consensus on ideal device placement and optimal programming strategies," said Michele Tagliati, MD, director of the Movement Disorders Program in the Department of Neurology at Cedars-Sinai.

"This modeling paves the way for the construction of practical therapeutic and investigational targets," added Tagliati, senior author of an article now available on the online edition of Annals of Neurology.

Medications usually are the first line of treatment for dystonia and several other , but if drugs fail – as frequently happens – or side effects are excessive, neurologists and neurosurgeons may supplement them with . Electrical leads are implanted deep in the brain, and a pulse generator is placed near the collarbone. The device is later programmed with a remote, hand-held controller.

To calm the disorganized muscle contractions of dystonia, doctors generally target a brain structure called the globus pallidus, but studies on precise positioning of electrode contacts and the best programming parameters – such as the intensity and frequency of electrical stimulation – are rare and conflicting. Finding the most effective settings can take months of fine-tuning.

In this retrospective study, investigators examined a database of 94 patients with the most common genetic form of , DYT1, who had been treated with DBS for at least a year. They selected 21 patients who had good responses to treatment, compiled their demographic and treatment information, and used magnetic resonance imaging scans to create 3-D anatomical models with a fine grid to show exact location of relevant brain structures.

The investigators then simulated the placement of electrodes as they were positioned in the patients' brains and input the actual stimulation parameters into a computer program – a "volume of tissue activation" model – which calculated detailed information specific to each patient and each electrode. The model draws on principles of neurophysiology – the way nerve cells respond to DBS – the biophysics of voltage distribution from electrodes, and the anatomy of the globus pallidus and surrounding structures.

"We found that clinicians were applying relatively large amounts of energy to wide swaths of the globus pallidus, but the area in common among most individuals was much smaller. We interpret this as being the potential 'target within the target,' and if our results are validated in further research and clinical practice, computer modeling may offer a physiologically-based, data-driven, visualized approach to clinical decision-making," Tagliati said.

Explore further: Study finds factors that may cause fluctuations in deep brain stimulation levels over time

More information: Annals of Neurology: "Defining a Therapeutic Target for Pallidal Deep Brain Stimulation for Dystonia." Online June 18, 2014. onlinelibrary.wiley.com/doi/10 … 2/ana.24187/abstract

Related Stories

Study finds factors that may cause fluctuations in deep brain stimulation levels over time

July 11, 2013
Deep brain stimulation therapy blocks or modulates electrical signals in the brain to improve symptoms in patients suffering from movement disorders such as Parkinson's disease, essential tremor and dystonia, but a new study ...

Long-term study reports deep brain stimulation effective for most common hereditary dystonia

June 19, 2013
In what is believed to be the largest follow-up record of patients with the most common form of hereditary dystonia – a movement disorder that can cause crippling muscle contractions – experts in deep brain stimulation ...

In some dystonia cases, deep brain therapy benefits may linger after device turned off

February 12, 2013
Two patients freed from severe to disabling effects of dystonia through deep brain stimulation therapy continued to have symptom relief for months after their devices accidentally were fully or partly turned off, according ...

Cedars-Sinai movement disorders expert on international task force for dystonia treatment

July 21, 2011
Neurologist Michele Tagliati, MD, director of the Movement Disorders Program at Cedars-Sinai Medical Center, served on an elite international task force commissioned by the Movement Disorder Society to provide insights and ...

Precise brain mapping can improve response to deep brain stimulation in depression

April 28, 2014
Experimental studies have shown that deep brain stimulation (DBS) within the subcallosal cingulate (SCC) white matter of the brain is an effective treatment for many patients with treatment-resistant depression. Response ...

Referring doctors increasingly aware of deep brain stimulation therapy; more work remains

August 16, 2011
While deep brain stimulation has gained recognition by referring physicians as a treatment for Parkinson's disease and other movement disorders, just half of the patients they recommend are appropriate candidates to begin ...

Recommended for you

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.