First fMRI images of individual neurons

June 4, 2014, CEA

A research team from CEA NeuroSpin and the Institut de neurosciences cognitives et intégratives d'Aquitaine (CNRS/Université de Bordeaux) demonstrated the possibility to obtain functional magnetic resonance images (fMRI) with single cell resolution. These results have been published in PNAS.

The researchers studied the Aplysia californica, a marine gastropod mollusk commonly known as "sea hare", whose nervous system is composed of a small number of neurons (20 000). They obtained images of the majority of neurons within the buccal ganglia of the animal using an ultra-high MRI system (17.2 T).

The technique implemented relied on injecting into the living animal small quantities (non-toxic doses) of a contrast agent, manganese, which enters and accumulates within active neurons. Maps of the manganese distribution within the buccal network were subsequently obtained revealing the neurons activated by different food stimuli.

The presence of an aliment in the animal's environment and its ingestion lead to different neuronal responses in the same neurons. Therefore, this microscopic fMRI technique can be used to probe the functional organization and plasticity of neuronal networks with single cell resolution

Applying this method to studying the entire of the Aplysia will allow, in the near future, investigations of functional alteration leading to neurological damage. Using the same approach to investigate vertebrate nervous systems is challenging but certainly not impossible. Magnetic resonance microscopy images of chemically fixed human and porcine have been obtained at lower magnetic field strengths. It is conceivable that the method published in PNAS coupled with improved hardware technologies (microcoils, stronger magnetic field gradients) will allow single-cell functional magnetic resonance studies of live mammalian tissues.

Explore further: Illuminating neuron activity in 3-D

More information: Paper: Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica, Guillaume Radecki, DOI: 10.1073/pnas.1403739111

Related Stories

Illuminating neuron activity in 3-D

May 18, 2014
Researchers at MIT and the University of Vienna have created an imaging system that reveals neural activity throughout the brains of living animals. This technique, the first that can generate 3-D movies of entire brains ...

Perfecting the combined MR/PET

June 3, 2014
PET (Positron Emission Tomography) is an imaging technique that provides insight into the metabolic and functional alterations related to pathologic process. CT (Computerized X-Ray Tomography) and MRI (Magnetic Resonance ...

Scientists define brain network behind attention, daydreaming

November 20, 2013
Stanford neuroscientists have for the first time traced how three brain networks mediate the mind's internal focus and its processing of stimuli from the outside world.

Scientists offer new insight into neuron changes brought about by aging

January 22, 2014
How aging affects communication between neurons is not well understood, a gap that makes it more difficult to treat a range of disorders, including Alzheimer's and Parkinson's disease.

Persistent sync for neurons: Rats' neurons reveal steady neural network coordination

November 7, 2012
(Phys.org)—A team of Brazilian physicists working with neuroscientists studying freely behaving rats have found that their neurons often act in precise coordination over time, in a study about to be published in the European ...

Recommended for you

Your brain responses to music reveal if you're a musician or not

January 23, 2018
How your brain responds to music listening can reveal whether you have received musical training, according to new Nordic research conducted in Finland (University of Jyväskylä and AMI Center) and Denmark (Aarhus University).

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.