Scientists define brain network behind attention, daydreaming

November 20, 2013 by Geoffrey Mohan

Stanford neuroscientists have for the first time traced how three brain networks mediate the mind's internal focus and its processing of stimuli from the outside world.

By stimulating neurons with electromagnets, the researchers demonstrated how the brain's executive and salience networks - crucial for cognition and decision-making - inhibit the default mode network, which centers on self-directed processes such as introspection, recall and rumination.

"As you engage in any task that's attention demanding, you activate these outside world networks - the executive and salience network - and you deactivate or turn down the default mode network," said Stanford neuroscientist and psychiatrist Dr. Amit Etkin, lead author of the study published online Monday in Proceedings of the National Academy of Sciences.

Dysfunction among those networks has been implicated in a broad array of , including depression, , autism and schizophrenia.

Imaging studies had long ago established strong correlations among these networks, but the causal path of their interplay had been indecipherable from the data produced through functional magnetic resonance imaging, or fMRI, according to the authors.

"You don't actually know which events were responsible for which other events," said Etkin, who also works with the Veterans Administration Palo Alto Health Care System. "That is, you don't really have a sense of causality."

The researchers used trans-cranial , a technique that applies a magnetic field to alter the electrochemical signaling in neurons. It has been used for decades to test brain function, and has been approved for treatment of depression.

When applied to discreet areas in the cortex, the magnetic fields provoked responses, evident on fMRI scans, that resembled voluntary brain activity. Researchers then measured the effect of stimulating the executive and salience networks, and recorded a drop in activity in the . When they used a low-frequency magnetic field to inhibit the executive and salience network, the default mode showed heightened activity.

The study also turned up intriguing clues toward new therapies. One of the executive network nodes they stimulated was closely associated with inhibiting a specific area of the default mode that scientists believe is crucial to the antidepressant effects of magnetic stimulation and drug therapies. That could offer neurological clues to why magnetic stimulation appears to work - an effect that has remained somewhat mysterious.

"We're already starting to think about how to use this for novel treatments," Etkin said. "If the default mode were abnormal in patients - which we know to be true for a range of psychiatric disorders - and you knew how to modulate it in the right way, which is what this study provides, then you would have a very important insight into how to potentially remediate these circuits for treatment of these disorders."

Explore further: Imaging the magnetically stimulated brain

Related Stories

Imaging the magnetically stimulated brain

November 19, 2013
(Medical Xpress)—MRI scanners have steadily increased in power, giving researchers ever finer-grained snapshots of the brain in action. However just as modern day fighters can pull high G turns that would drain consciousness ...

Researchers show brain's battle for attention

April 11, 2013
(Medical Xpress)—We've all been there: You're at work deeply immersed in a project when suddenly you start thinking about your weekend plans. It happens because behind the scenes, parts of your brain are battling for control.

Not getting sleepy? Study explains why hypnosis doesn't work for all

October 3, 2012
Not everyone is able to be hypnotized, and new research from the Stanford University School of Medicine shows how the brains of such people differ from those who can easily be.

Brain network decay detected in early Alzheimer's

August 19, 2013
In patients with early Alzheimer's disease, disruptions in brain networks emerge about the same time as chemical markers of the disease appear in the spinal fluid, researchers at Washington University School of Medicine in ...

Breakdown of neural networks could help doctors track, better understand spread of Alzheimer's in brain

September 18, 2012
(Medical Xpress)—Scientists at Washington University School of Medicine in St. Louis have taken one of the first detailed looks into how Alzheimer's disease disrupts coordination among several of the brain's networks. The ...

Brain connectivity altered in type 2 diabetes

August 1, 2012
(HealthDay) -- Patients with type 2 diabetes mellitus (T2DM) have reduced functional connectivity in the default mode network, which is associated with insulin resistance in some brain regions, according to a study published ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.