New method to grow zebrafish embryonic stem cells can regenerate whole fish

June 30, 2014
Credit: 2014, Mary Ann Liebert, Inc., publishers

Zebrafish, a model organism that plays an important role in biological research and the discovery and development of new drugs and cell-based therapies, can form embryonic stem cells (ESCs). For the first time, researchers report the ability to maintain zebrafish-derived ESCs for more than 2 years without the need to grow them on a feeder cell layer, in a study published in Zebrafish.

Ho Sing Yee and coauthors from the Malaysian Ministry of Science, Technology and Innovation (Pulau Pinang), Universiti Sains Malaysia (Penang), and National University of Singapore describe the approach they used to be able to maintain stem cells in and in an undifferentiated state for long periods of time. The ability to establish and grow the zebrafish ESCs without having a feeder layer of cells to support them simplifies their use and could expand their utility. In the article "Derivation and Long-Term Culture of an Embryonic Stem Cell-Like Line from Zebrafish Blastomeres Under Feeder-Free Condition", the authors show that the ESCs retain the morphology, properties, and ability to differentiate into a variety of cell types that is characteristic of ESCs, and were used to generate offspring after transmission through the germline.

"By addressing a major technical bottleneck in the field, this new culture system enables an array of exciting cellular and molecular genetic manipulations for the zebrafish," says Stephen Ekker, PhD, Editor-in-Chief of Zebrafish and Professor of Medicine at Mayo Clinic, Rochester, MN.

Explore further: Researchers develop editing toolkit for customizing zebrafish genomes

More information: The article is available free on the Zebrafish website.

Related Stories

Researchers develop editing toolkit for customizing zebrafish genomes

September 23, 2012
Mayo Clinic researchers and an international team of scientists have developed a highly-efficient means of editing zebrafish genomes for research purposes, eliminating a bottleneck that has stymied biomedical scientists from ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.