Researchers identify mitochondrial mutation linked to congenital myasthenic syndrome

June 20, 2014

Although significant progress has been made over the last 25 years to identify genetic abnormalities associated with congenital myasthenic syndromes (CMS), many patients remain genetically undiagnosed. A report in the inaugural issue of the Journal of Neuromuscular Diseases identifies a gene defect in mitochondria, specifically the citrate carrier SLC25A1, that may underlie deficits in neuromuscular transmission seen in two siblings.

"While mitochondrial gene defects can cause a myriad of neurological disorders including myopathies and neuropathies, these have not been specifically implicated in defects of the neuromuscular junction," says Hanns Lochmüller, MD, Professor of Experimental Myology, Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, UK.

Of the 19 genes that have been implicated in CMS, most express proteins involved in neuromuscular synapse development and function. These mutations usually involve post-synaptic proteins. The current study shifts the area of impairment to the presynaptic region.

Investigators conducted genomic analyses of two patients who are brother and sister. The pair was born to healthy parents who were first cousins. "The family history was highly suggestive of autosomal recessive inheritance," notes Dr. Lochmüller. Since childhood, the 33-year-old brother had displayed some speech and motor problems that worsened with exercise and improved with rest. He had mild bilateral ptosis (drooping of the eyelid), speech difficulties, and mild learning disabilities. His 19-year-old sister showed delayed development including recurrent falls, fatigable limb weakness, intermittent double vision, and some drooping of facial muscles.

The investigators performed homozygosity mapping and whole exome sequencing to determine the underlying genetic cause of the siblings' condition and successfully identified a homozygous mutation in the SLC25A1 gene. SLC25A1 is a mitochondrial citrate carrier believed to be a key component in many important biological processes, such as fatty acid and sterol biosynthesis, gluconeogenesis, glycolysis, maintenance of chromosome integrity, and regulation of autophagy.

Using electrophysiologic techniques, researchers were able to show clear abnormalities in the of the patients, as evidenced by increased jitter or jitter with blocking of muscle fibers.

Researchers also found evidence that SLC25A1 may be required for normal neuromuscular junction formation by looking at the effects of reduced expression of SLC25A1 in zebrafish embryos. Anatomically, while the muscle fibers appeared normal, presynaptic motor axon terminals were shortened and grew erratically, with no evidence of complete synapse formation. They also saw structural changes in the brain and heart, which mirrored abnormalities seen in humans.

"It is still not clear how deficits in a mitochondrial citrate carrier result in neuromuscular junction defect," comments Dr. Lochmüller. However, while mutations in SLC25A1 may prove to only be a rare cause of CMS, he and his co-investigators advise clinicians that should a patient show fatigable weakness, it may be appropriate to test for SLC25A1 mutations and consider screening for cardiac and metabolic defects should these mutations be found.

"We aimed to identify the underlying molecular defect in this family ever since we met them first in clinic more than 20 years ago," adds co-investigator Kate Bushby, MD, Professor of Neuromuscular Genetics, Institute of Genetic Medicine, MRC Centre for Neuromuscular Diseases, Newcastle University. "We are pleased that latest sequencing technology has resolved this long-standing diagnostic puzzle, which helps us in counseling and treating them more effectively".

Congenital myasthenic syndromes (CMS) are a group of inherited characterized by muscle weakness (myasthenia). Typical symptoms include weakness of muscles controlling limbs, as well those involved with control of the eyes, respiration, and movements of the face, head, and neck (due to involvement of the corticobulbar tract). The symptoms are fatigable, meaning that they worsen with repetition, and severity of the deficits can range from mild to severe.

Explore further: Scientists discovered genetic cause for rare disorder of motor neurones

More information: "Mutations in the Mitochondrial Citrate Carrier SLC25A1 Are Associated with Impaired Neuromuscular Transmission," by Amina Chaouch et al. iospress.metapress.com/content/l36500736v3r4132

Related Stories

Scientists discovered genetic cause for rare disorder of motor neurones

December 7, 2012
(Medical Xpress)—Scientists have identified an underlying genetic cause for a rare disorder of motor neurones, and believe this may help find causes of other related diseases.

New research sheds light on childhood neuromuscular disease

November 20, 2012
A study by scientists at the Motor Neuron Center at Columbia University Medical Center suggests that spinal muscular atrophy (SMA), a genetic neuromuscular disease in infants and children, results primarily from problems ...

Group doctor visits may improve life for people with muscle disorders

June 18, 2014
A new study suggests that people with muscle diseases such as muscular dystrophies may benefit more from group doctor visits than individual appointments. The study is published in the June 18, 2014, online issue of Neurology, ...

Mutant protein in muscle linked to neuromuscular disorder

April 16, 2014
Sometimes known as Kennedy's disease, spinal and bulbar muscular atrophy (SBMA) is a rare inherited neuromuscular disorder characterized by slowly progressive muscle weakness and atrophy. Researchers have long considered ...

Scientists discover gene behind rare disorders

October 9, 2012
Scientists at the Montreal Neurological Institute and Hospital – The Neuro, McGill University working with a team at Oxford University have uncovered the genetic defect underlying a group of rare genetic disorders.

Researchers identify genetic mutation causing rare form of spinal muscular atrophy

May 10, 2012
Scientists have confirmed that mutations of a gene are responsible for some cases of a rare, inherited disease that causes progressive muscle degeneration and weakness: spinal muscular atrophy with lower extremity predominance, ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.