Scientists identify link between stem cell regulation and the development of lung cancer

June 19, 2014, University of California, Los Angeles

UCLA researchers led by Dr. Brigitte Gomperts have discovered the inner workings of the process thought to be the first stage in the development of lung cancer. Their study explains how factors that regulate the growth of adult stem cells that repair tissue in the lungs can lead to the formation of precancerous lesions.

Findings from the three-year study could eventually lead to new personalized treatments for lung cancer, which is responsible for an estimated 29 percent of U.S. cancer deaths, making it the deadliest form of the disease.

The study was published online on June 19 in the journal Stem Cell. Gomperts, a member of the UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and the UCLA Jonsson Comprehensive Cancer Center, collaborated with Manash Paul and Bharti Bisht, postdoctoral scholars and co-lead authors of the study.

Adult stem cells in lung airways are present specifically to repair the airways after injury or disease caused by smoking, pollution, viruses or other factors. Gomperts and her team found that this reparative process is tightly regulated by molecules called reactive oxygen species, or ROS.

Recent research has shown that low levels of ROS are important for signaling the stem cells to perform important functions—such as repairing tissue damage—while high levels of ROS can cause stem cells to die. But the level of ROS needed for repair to be initiated has remained a subject of debate among researchers.

The UCLA study found that the dynamic flux of ROS from low to moderate levels in the airway stem cells is what drives the repair process, and that the increase in ROS levels in the repairing cell is quickly reduced to low levels to prevent excessive cell proliferation.

Gomperts' lab found that disrupting this normal regulation of ROS back to low levels is equivalent to pulling the brakes off of the stem cells: They will continue to make too many of themselves, which causes the cells not to mature and instead become precancerous lesions. Subsequent progressive genetic changes to the cells in these lesions over time can eventually allow cancerous tumors to form.

"Low ROS is what keeps stem cells primed so that your body is poised and ready to respond to injury and repair," said Gomperts, who also is an associate professor in the department of pediatrics at UCLA. "Loss of this ROS regulation leads to precancerous lesions. Now, with this precancerous model in place, we can begin looking for what we call 'driver mutations,' or those specific changes that take the to full-blown cancer."

Gomperts said that because many different factors—including cigarette smoke, smog and inflammation—could potentially trigger an increase in ROS in the airway stem cells, researchers might eventually be able to customize treatments based on the cause. "There are likely multiple ways for a person to get to a precancerous lesion, so the process could be different among different groups of people. Imagine a personalized way to identify what pathways have gone wrong in a patient, so that we could target a therapy to that individual."

The research's ultimate goal is to develop a targeted strategy to prevent pre-malignant lesions from forming by targeting the biology of these lesions and therefore preventing lung cancer from developing.

"Our study is important because it sheds light on how can form, and this will hopefully lead to new therapies for this terrible disease," Paul said.

The UCLA study also is noteworthy for finally identifying specifically how ROS affects the proliferation of .

Explore further: New airway stem cell found

Related Stories

New airway stem cell found

June 27, 2011
Researchers at UCLA have identified a new stem cell that participates in the repair of the large airways of the lungs, which play a vital role in protecting the body from infectious agents and toxins in the environment.

Tumor suppressor genes vital to regulating blood precursor cells in fruit flies

September 5, 2012
UCLA stem cell scientists have shown that two common tumor suppressor genes, TSC and PTEN, are vital to regulating the stem cell-like precursor cells that create the blood supply in Drosophila, the common fruit fly.

A novel disease-preventing antioxidant pathway

May 27, 2014
Interested in antioxidants? They protect us against aging and cancer. It's one of the reasons we like our green tea and even our broccoli. But there is a new kid on the antioxidant block - uric acid. But wait, you're thinking, ...

How prostate cancer cells evolve

December 4, 2013
(Medical Xpress)—UCLA researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies. 

Recommended for you

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

New immunotherapy approach boosts body's ability to destroy cancer cells

January 12, 2018
Few cancer treatments are generating more excitement these days than immunotherapy—drugs based on the principle that the immune system can be harnessed to detect and kill cancer cells, much in the same way that it goes ...

Cancer's gene-determined 'immune landscape' dictates progression of prostate tumors

January 12, 2018
The field of immunotherapy - the harnessing of patients' own immune systems to fend off cancer - is revolutionizing cancer treatment today. However, clinical trials often show marked improvements in only small subsets of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.