Researchers use new simple cost effective technology to unravel cancer through standard imaging

June 3, 2014

Researchers at Maastricht University Medical Center+ (Maastricht UMC+) and the MAASTRO Clinic have developed a new medical imaging analysis method to predict the risk of dying of cancer in patients. For the first time, they have been able to make a visual fingerprint of a tumour that provides detailed information. The new technique is known as radiomics and it makes use of standard imaging technology present in every hospital. Based on the specific information acquired with radiomics, doctors can select and apply the most effective treatment for each patient. The researchers have published the promising results of their study in the prestigious journal Nature Communications.

Tumours can differ substantially in terms of their properties, for example their shape, size and/or composition. Medical imaging technologies, such as a CT scan, offer a simple way of making some of these properties visible. In itself, however, the image says nothing about how the will develop. Now, have shown that the new radiomics technique can predict tumour progress. The researchers are participating in a major international study headed jointly by Maastricht UMC+ and Harvard Medical School in Boston (US).

Unravelling secrets

The researchers quantified 440 properties taken from a total of 1019 CT scans of and head and neck patients. This involved using sophisticated and intelligent software that transforms the tumour properties shown in a scan into clinically meaningful numbers, giving rise to a kind of blueprint for that specific tumour. "That data allows us to unravel the digital fingerprint of each separate tumour, in a manner of speaking," says Dr Philippe Lambin, professor of radiotherapy at Maastricht UMC+ and project leader. "We discovered that a subset of the lung tumours shared four characteristics related to intra-tumour heterogeneity and these cancers grew and proliferated faster than others, leading to worse patient outcomes. What really surprised us is that the exact same four characteristics - the same signature, if you like - showed up in aggressive, head and neck cancers too, again predicting a poorer survival after radiation therapy. That's exceptionally valuable information that we can use to predict the progress of the cancer, among other things. We can now identify patients who will benefit from stronger medication, for example, while keeping treatment simple, pain-free and cost-effective."

Explore further: 'Liquid biopsy' offers new way to track lung cancer

Related Stories

'Liquid biopsy' offers new way to track lung cancer

June 3, 2014
(Medical Xpress)—Scientists have shown how a lung cancer patient's blood sample could be used to monitor and predict their response to treatment – paving the way for personalised medicine for the disease.

Non-uniform genetic mutations identified in lung cancers could lead to targeted treatment

April 23, 2014
The research, published in the journal Oncotarget, explored tumour heterogeneity – where different cells have different appearances or their own DNA signatures within the same cancer. Such differences could make it difficult ...

Simple protein test could improve prediction of survival rates for patients with head and neck cancer

January 24, 2014
(Medical Xpress)—Scientists from The University of Manchester – part of the Manchester Cancer Research Centre - used a simple protein test that could prove more useful in predicting survival chances for patients with ...

New agent may enhance effectiveness of radiotherapy

May 13, 2014
Scientists from The University of Manchester – part of the Manchester Cancer Research Centre - have demonstrated the potential of a drug to improve the effectiveness of radiotherapy in stopping tumour growth.

Oxygen levels in tumours affect response to treatment

November 7, 2013
(Medical Xpress)—The genetic make-up of a patient's tumour could be used to personalise their treatment, and help to decide whether they would benefit from receiving additional drugs as part of their radiotherapy programme, ...

Scientists discover new route to boost pancreatic cancer treatment

May 30, 2014
Cancer Research UK scientists have uncovered new insights into how a key pancreatic cancer drug – gemcitabine – is broken down in tumour cells, according to research* published in the British Journal of Cancer (BJC), ...

Recommended for you

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

How CD44s gives brain cancer a survival advantage

July 19, 2017
Understanding the mechanisms that give cancer cells the ability to survive and grow opens the possibility of developing improved treatments to control or cure the disease. In the case of glioblastoma multiforme, the deadliest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.