Researchers tie social behavior to activity in specific brain circuit

June 19, 2014, Stanford University Medical Center
Credit: Rice University

A team of Stanford University investigators has linked a particular brain circuit to mammals' tendency to interact socially. Stimulating this circuit—one among millions in the brain—instantly increases a mouse's appetite for getting to know a strange mouse, while inhibiting it shuts down its drive to socialize with the stranger.

The new findings, to be published June 19 in Cell, may throw light on psychiatric disorders marked by impaired social interaction such as autism, social anxiety, schizophrenia and depression, said the study's senior author, Karl Deisseroth, MD, PhD, a professor of bioengineering and of psychiatry and behavioral sciences. The findings are also significant in that they highlight not merely the role of one or another brain chemical, as pharmacological studies tend to do, but rather the specific components of brain circuits involved in a complex behavior. A combination of cutting-edge techniques developed in Deisseroth's laboratory permitted unprecedented analysis of how brain activity controls behavior.

Deisseroth, the D.H. Chen Professor and a member of the interdisciplinary Stanford Bio-X institute, is a practicing psychiatrist who sees patients with severe social deficits. "People with autism, for example, often have an outright aversion to social interaction," he said. They can find socializing—even mere eye contact—painful.

Deisseroth pioneered a brain-exploration technique, optogenetics, that involves selectively introducing light-receptor molecules to the surfaces of particular in a living animal's brain and then carefully positioning, near the circuit in question, the tip of a lengthy, ultra-thin optical fiber (connected to a laser diode at the other end) so that the photosensitive cells and the circuits they compose can be remotely stimulated or inhibited at the turn of a light switch while the animal remains free to move around in its cage.

Using optogenetics and other methods he and his associates have invented, Deisseroth and his associates were able to both manipulate and monitor activity in specific nerve-cell clusters, and the fiber tracts connecting them, in mice's brains in real time while the animals were exposed to either murine newcomers or inanimate objects in various laboratory environments. The mice's behavioral responses were captured by video and compared with simultaneously recorded brain-circuit activity.

In some cases, the researchers observed activity in various brain centers and nerve-fiber tracts connecting them as the mice variously examined or ignored one another. Other experiments involved stimulating or inhibiting impulses within those circuits to see how these manipulations affected the mice's social behavior.

To avoid confusing simple social interactions with mating- and aggression-related behaviors, the researchers restricted their experiments to female mouse pairs.

The scientists first examined the relationship between the mice's social interactions and a region in the brain stem called the ventral tegmental area. The VTA is a key node in the brain's reward circuitry, which produces sensations of pleasure in response to success in such survival-improving activities as eating, mating or finding a warm shelter in a cold environment.

The VTA transmits signals to other centers throughout the brain via tracts of fibers that secrete chemicals, including one called dopamine, at contact points abutting nerve cells within these faraway centers. When dopamine lands on receptors on those nerve cells, it can set off signaling activity within them.

Abnormal activity in the VTA has been linked to drug abuse and depression, for example. But much less is known about this brain center's role in social behavior, and it had not previously been possible to observe or control activity along its connections during social behavior.

Deisseroth and his colleagues used mice whose dopamine-secreting, or dopaminergic, VTA nerve cells had been bioengineered to express optogenetic control proteins that could set off or inhibit signaling in the cells in response to light. They observed that enhancing activity in these cells increased a mouse's penchant for social interaction. When a newcomer was introduced into its cage, it came, it saw, it sniffed. Inhibiting the dopaminergic VTA cells had the opposite effect: The host lost much of its interest in the guest.

On the other hand, such manipulations of the VTA's dopaminergic cells had no effect on the mice's penchant for exploring novel objects (a golf ball, for example) placed in their cages. Nor did it change their overall propensity to move around. The effect appeared to be specific for social interaction.

Finding out exactly which dopaminergic projections from the VTA, traveling to which remote brain structures, were carrying the signals that generate exploratory social behavior required designing a new monitoring methodology. The signals traveling along such projections are extremely weak and confounded by background noise, especially when located deep within the brains of ambulatory animals. Deisseroth's group overcame this by developing a highly sensitive technology capable of plucking these tiny signals out of the surrounding noise. The new technique, called fiber photometry, is a sophisticated way of measuring calcium flux, which invariably accompanies signaling activity along the fibers projecting from nerve cells.

Using a combination of optogenetics and fiber photometry, the investigators were able to demonstrate that a particular tract projecting from the VTA to a mid-brain structure called the nucleus accumbens (also strongly implicated in the reward system) was the relevant conduit carrying the impetus to in the mice.

A third technological trick helped determine which recipient nerve cells within the nucleus accumbens were involved in the social-behavior circuitry. That structure's two types of dopamine-responsive cells are differentiated by the types of dopamine receptors, referred to as D1 and D2, on their surfaces. The team performed experiments in animals bioengineered so that the normally D1-containing cells instead expressed a modified, light-inducible version of that receptor. These experiments, along with complementary experiments blocking the D1 receptors with specific drug antagonists, showed that the D1 nucleus-accumbens nerve cells were mediating the changes in social behavior. Tripping off those receptors, either by optogenetically inducing incoming tracts to deliver dopamine to these receptors, or by directly stimulating light-activated forms of these receptors on the target cells, enhanced mice's social exploration.

"Every behavior presumably arises from a pattern of activity in the brain, and every behavioral malfunction arises from malfunctioning circuitry," said Deisseroth, who is also co-director of Stanford's Cracking the Neural Code Program. "The ability, for the first time, to pinpoint a particular nerve-cell projection involved in the social behavior of a living, moving animal will greatly enhance our ability to understand how operates, and how it can go wrong."

Explore further: Scientists induce, relieve depression symptoms in mice with light

Related Stories

Scientists induce, relieve depression symptoms in mice with light

December 12, 2012
Among those who suffer from depression, the dual inabilities to experience enjoyment in things once pleasurable and to physically motivate oneself—to meet challenges, or even to get out of bed in the morning—have been ...

Stress-resilience, susceptibility traced to neurons in reward circuit

December 12, 2012
A specific pattern of neuronal firing in a brain reward circuit instantly rendered mice vulnerable to depression-like behavior induced by acute severe stress, a study supported by the National Institutes of Health has found. ...

Social deficits associated with autism, schizophrenia induced in mice with new technology

July 27, 2011
Researchers at Stanford University School of Medicine have been able to switch on, and then switch off, social-behavior deficits in mice that resemble those seen in people with autism and schizophrenia, thanks to a technology ...

Studying behavior using light to control neurons

May 15, 2014
A new paper published by OIST's Neurobiology Research Unit identifies some of the neurons responsible for behavioral decisions in rats.

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 23, 2014
Social behavior is nutrient-dependent and pheromone-controlled in all individuals of all species (i.e., with or without brains). The specific circuits that are involved in the control of social behavior exemplify how ecological variation leads to ecological adaptations via cell type differentiation that links the epigenetic landscape to the physical landscape of DNA in the organized genomes of species from microbe to man via the ecological, social, neurogenic, and socio-cognitive niche construction that enables organismal complexity in morphological and behavioral phenotypes.

See for examples: Nutrient-dependent/pheromone-controlled adaptive evolution: a model.

The mouse-to-human example that explains the disappearance of the Neandertals reveals how much pseudoscientific nonsense has been taught to those who believe in mutaiton-initiated natural selection and the evolution of biodiversity (that is nutrient-dependent).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.