Team finds on-off switch to burning stored fat

June 5, 2014

Scientists this week reported that a molecular pathway called mTORC1 controls the conversion of unhealthy white fat into beige fat, an appealing target for increasing energy expenditure and reducing obesity. The team, led by researchers from the School of Medicine at The University of Texas Health Science Center at San Antonio, also found that a protein, Grb10, serves as the on-off switch for mTORC1 signaling and the "beigeing" of fat.

The finding could inform development of novel diabetes and obesity drugs, the scientists said. The study is reported in this month's issue of Cell Metabolism and was selected as the highlighted featured article.

Heat in response to cold

Grb10 is stimulated by cold stress, which causes the body to burn energy. ""We know that if we want to keep our body lean, we have to get rid of extra nutrients in the body, which means burning more energy," said senior author Feng Liu, Ph.D., professor of pharmacology at the UT Health Science Center and director of the Metabolic Syndrome Research Center at Xiangya Second Hospital, Central South University, in Changsha, China.

"Understanding how beigeing is controlled is so very important because if we can improve energy expenditure, we can reduce obesity," Dr. Liu said.

Undesirable storage

Adipose (fat) tissues, which include and , are important regulators of metabolism. Having too much white adipose tissue and not burning it off through exercise or other is associated with obesity and metabolic diseases such as type 2 diabetes.

"Normally when we eat something, we store it in white fat," said co-author Lily Dong, Ph.D., professor of cellular and structural biology at the UT Health Science Center. "For the extra food we eat, it is better to release it, not store it. So finding a way to turn the into beige and burn the energy that normally we store would have high therapeutic potential for the treatment of obesity and its related diseases. Dr. Liu has identified the pathway to do this."

Broader application

The mTORC1 pathway is also involved in aging, cardiovascular disease and cancer, so identifying the regulator of this pathway, Grb10, should be very informative for researching other fields, Dr. Liu said.

Drs. Liu and Dong also are members of the Health Science Center's Barshop Institute for Longevity and Aging Studies.

Explore further: Activating the immune system could treat obesity and diabetes

More information: Grb10 Promotes Lipolysis and Thermogenesis by Phosphorylation-Dependent Feedback Inhibition of mTORC1, Cell Metabolism , Volume 19, Issue 6, 3 June 2014, Pages 967-980

Related Stories

Activating the immune system could treat obesity and diabetes

June 5, 2014
Obesity is a worldwide epidemic that is causing alarming rates of diabetes and cardiovascular disease, but currently there is a lack of effective drug treatments. Two unrelated studies published by Cell Press June 5th in ...

Immune system molecules may promote weight loss, study finds

June 5, 2014
The calorie-burning triggered by cold temperatures can be achieved biochemically – without the chill – raising hopes for a weight-loss strategy focused on the immune system rather than the brain, according to a new study ...

New source of fat tissue stem cells discovered

May 9, 2014
Researchers have found a new source of stem cells that produce fat tissue, findings presented today at the European Congress of Endocrinology in Wrocław, Poland, show. This unique in vitro human stem cell model of brown ...

Researchers identify specific causes of brown fat cell 'whitening'

April 9, 2014
Boston University researchers have learned new information about the consequences of overeating high-calorie foods. Not only does this lead to an increase in white fat cell production, the type prominent in obesity, but it ...

Reducing liver protein SIRT1 levels

January 22, 2014
A new study led by Boston University School of Medicine (BUSM) demonstrates that the abnormal metabolism linked to obesity could be regulated in part by the interaction of two metabolic regulators, called the NAD-dependent ...

'Supermodel' mouse reveals mechanisms that regulate metabolism, researchers find

May 20, 2014
A lean "Supermodel" mouse type has revealed the potentially critical role played by a largely unknown gene that regulates metabolism, findings that could provide new insight into diseases ranging from diabetes to obesity, ...

Recommended for you

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.