TGen, Scottsdale Healthcare begin study of new drug for patients with solid tumors

June 17, 2014

The Virginia G. Piper Cancer Center at Scottsdale Healthcare and the Translational Genomics Research Institute (TGen) are studying the safety and effectiveness of a new drug, AG-120, for treatment of patients with solid tumors, especially those with brain tumors and gallbladder bile duct cancer.

"AG-120 is designed specifically for those patients who carry the IDH1 gene mutation," said Dr. Daniel D. Von Hoff, Distinguished Professor and Physician-In-Chief at TGen, and Chief Scientific Officer for the Virginia G. Piper Cancer Center Clinical Trials at Scottsdale Healthcare, a partnership between Scottsdale Healthcare and TGen that delivers new treatments to cancer patients based on precision medicine.

The IDH1 gene mutation is most commonly found in gliomas, which make up the largest group of "primary" brain tumors, those that start in the brain. Gliomas include all tumors arising from the gluey or supportive tissue of the brain. They represent about 30 percent of all brain tumors, and about 80 percent of all malignant .

As with all brain cancers, gliomas are difficult to treat and many grow back after surgery, radiation and standard of care chemotherapy. Many drugs cannot get to the brain because of a filtering mechanism in the body called the blood-brain barrier.

"There is a great need for more effective treatments for patients with gliomas and other , such as gallbladder ," said Dr. Von Hoff, who is the Principal Investigator for AG-120 clinical trial. This study will enroll as many as 50 patients. Researchers will use precision medicine to match treatments to patient's specific genomic, or molecular, makeups.

Mutations in isocitrate dehydrogenase (IDH) 1 and 2, originally discovered in 2008, occur in the vast majority of low-grade gliomas and secondary high-grade gliomas. IDH mutations are oncogenic, meaning they have the potential to cause cancer. These mutations occur early in the formation of gliomas and in gallbladder bile duct cancer.

AG-120 is produced by Agios Pharmaceuticals Inc., based in Cambridge, Mass.

IDH1 is a metabolic enzyme identified by Agios as a protein that is mutated in a wide range of malignant tumors. Agios and its collaborators recently demonstrated that IDH1 mutations initiate and drive cancer growth by blocking differentiation, or maturation, of primitive cells. According to Agios, the inhibition of these mutated proteins may lead to clinical benefit for those patients whose tumors carry them.

Explore further: Deep, integrated genomic analysis re-classifies lower-grade brain tumors

Related Stories

Deep, integrated genomic analysis re-classifies lower-grade brain tumors

April 8, 2014
Comprehensive genomic analysis of low-grade brain tumors sorts them into three categories, one of which has the molecular hallmarks and shortened survival of glioblastoma multiforme, the most lethal of brain tumors, researchers ...

Chemotherapy following radiation treatment improves progression-free survival

June 1, 2014
A chemotherapy regimen consisting of procarbazine, CCNU, and vincristine (PCV) administered following radiation therapy improved progression-free survival and overall survival in adults with low-grade gliomas, a form of brain ...

New therapy for pancreatic cancer patients shows promising results

June 5, 2014
A clinical trial conducted by researchers at the Virginia G. Piper Cancer Center Clinical Trials, a partnership between Scottsdale Healthcare and the Translational Genomics Research Institute (TGen), showed that a new drug ...

TGen, Virginia G. Piper Cancer Center studying new breast cancer drug

July 20, 2011
A new drug targeting the PI3K gene in patients with advanced breast cancer shows promising results in an early phase I investigational study conducted at Virginia G. Piper Cancer at Scottsdale Healthcare, according to a presentation ...

New vaccine study hopes to improve pancreatic cancer treatment

June 13, 2014
Medical investigators at the Virginia G. Piper Cancer Center at Scottsdale Healthcare are studying a new cancer immunotherapy to see if it can successfully help patients with advanced pancreatic cancer.

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.