New theory of diabetic complications' origin suggests need for new therapeutic approach

June 14, 2014, ClinMet

Use of anti-oxidants may be ineffective or even contribute to kidney disease and other complications of diabetes, rather than helping to treat such health problems. That conclusion, based on growing unexpected findings that stimulating mitochondrial function and superoxide production results in improved markers of renal, cardiovascular and nerve dysfunction, was presented this week in a "State-of-the-Art Lecture" at the 74th Scientific Sessions of the American Diabetes Association.

"Scientists have long hypothesized that oxidative stress underlies and is driven by mitochondrial production and subsequent free radical damage to proteins and DNA," said Kumar Sharma, M.D., F.A.H.A, U.C. San Diego professor, Director of the Center for Renal Translational Medicine, Division of Nephrology-Hypertension and the Institute of Metabolomic Medicine, and ClinMet scientific founder. "However, clinical trials to date have failed to demonstrate a benefit for anti-oxidant approaches and in some cases, such anti-oxidants have even increased mortality.

"Data from multiple independent investigations, including clinical metabolomics studies, now suggest that in response to excess calories, mitochondrial activity is actually reduced in target tissues for diabetes complications, and such persistent reduction may lead to the release of pro-inflammatory and pro-fibrotic cytokines and subsequent organ dysfunction. Moreover, approaches that restore and mitochondrial superoxide production via exercise, caloric restriction and medications should help promote tissue healing."

Dr. Sharma said that new research measuring real-time superoxide production demonstrated that stimulating such production was linked to improvement in . Additionally he noted that in independent studies in humans, pretreatment of subjects with anti-oxidants (vitamin C and vitamin E) prior to exercise led to a loss in exercise's protective benefits for insulin resistance.

"The new insights relating to the benefits of mitochondrial superoxide production, termed 'mitochondrial hormesis,' has raised many new exciting questions on the mechanisms linking mitochondrial superoxide production to beneficial effects," Dr. Sharma said. "One potential link is that mitochondrial superoxide stimulates the master energy sensor AMPK, which when activated can suppress inflammation and fibrosis. The new theory is also a major boost for drugs that target and support mitochondrial function as potential treatments for diabetic complications and perhaps many other chronic diseases."

Explore further: Enzyme restores function with diabetic kidney disease

Related Stories

Enzyme restores function with diabetic kidney disease

October 25, 2013
Researchers at the University of California, San Diego School of Medicine say that, while a prevailing theory suggests elevated cellular levels of glucose ultimately result in diabetic kidney disease, the truth may, in fact, ...

Urine biomarkers reveal mitochondrial dysfunction in diabetic kidney disease

October 10, 2013
Researchers at the University of California, San Diego School of Medicine have identified 13 metabolites – small molecules produced by cellular metabolism – that are significantly different in patients with diabetes and ...

A link between type 2 diabetes and mitochondrial function

October 1, 2013
Type 2 diabetes is a chronic condition that is characterized by resistance to or insufficient production of insulin, a hormone that controls sugar movement into cells. In certain tissues, insulin resistance has been associated ...

Doxorubicin-associated mitochondrial iron accumulation promotes cardiotoxicity

January 2, 2014
Doxorubicin is a widely used as a component of chemotherapy regimes; however, the use of doxorubicin is associated with severe cardiotoxicity. It is unclear exactly how doxorubicin promotes cardiotoxicity, but it has been ...

Energizing sick mitochondria with vitamin B3

April 7, 2014
Vitamins B have recently been turned out to be potent modifiers of energy metabolism, especially the function of mitochondria.

Scientists find potential target for treating mitochondrial disorders

March 27, 2014
Mitochondria, long known as "cellular power plants" for their generation of the key energy source adenosine triphosphate (ATP), are essential for proper cellular functions. Mitochondrial defects are often observed in a variety ...

Recommended for you

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.