Autistic brain less flexible at taking on tasks, study shows

July 29, 2014

The brains of children with autism are relatively inflexible at switching from rest to task performance, according to a new brain-imaging study from the Stanford University School of Medicine.

Instead of changing to accommodate a job, connectivity in key brain networks of autistic children looks similar to connectivity in the resting brain. And the greater this inflexibility, the more severe the child's manifestations of repetitive and restrictive behaviors that characterize , the study found.

The study, which will be published online July 29 in Cerebral Cortex, used functional magnetic resonance imaging, or fMRI, to examine children's brain activity at rest and during two tasks: solving simple math problems and looking at pictures of different faces. The study included an equal number of children with and without autism. The developmental disorder, which now affects one of every 68 children in the United States, is characterized by social and communication deficits, repetitive behaviors and sensory problems.

"We wanted to test the idea that a flexible brain is necessary for flexible behaviors," said Lucina Uddin, PhD, a lead author of the study. "What we found was that across a set of brain connections known to be important for switching between different tasks, children with autism showed reduced 'brain flexibility' compared with typically developing peers." Uddin, who is now an assistant professor of psychology at the University of Miami, was a postdoctoral scholar at Stanford when the research was conducted.

"The fact that we can tie this neurophysiological brain-state inflexibility to behavioral inflexibility is an important finding because it gives us clues about what kinds of processes go awry in autism," said Vinod Menon, PhD, the Rachel L. and Walter F. Nichols, MD, professor of psychiatry and behavioral sciences at Stanford and the senior author of the study.

The researchers focused on a network of brain areas they have studied before. These areas are involved in making decisions, performing social tasks and identifying relevant events in the environment to guide behavior. The team's prior work showed that, in children with autism, activity in these areas was more tightly connected when the brain was at rest than it was in children who didn't have autism.

The new research shows that, in autism, connectivity in these networks that can be seen on fMRI scans is fairly similar regardless of whether the brain is at rest or performing a task. In contrast, typically developing children have a larger shift in brain connectivity when they perform tasks.

The study looked at 34 kids with autism and 34 typically developing children. All of the children with autism received standard clinical evaluations to characterize the severity of their disorder. Then, the two groups were split in half: 17 children with autism and 17 typically developing children had their brains scanned with fMRI while at rest and while performing simple arithmetic problems. The remaining children had their brains scanned at rest and during a task that asked them to distinguish between different people's faces. The facial recognition task was chosen because autism is characterized by social deficits; the math task was chosen to reflect an area in which children with autism do not usually have deficits.

Children with autism performed as well as their typically developing peers on both tasks—that is, they were as good at distinguishing between the faces and solving the math problems. However, their brain scan results were different. In addition to the reduced brain flexibility, the researchers showed a correlation between the degree of inflexibility and the severity of restrictive and repetitive behaviors, such as performing the same routine over and over or being obsessed with a favorite topic.

"This is the first study that has examined how the patterns of intrinsic brain connectivity change with a cognitive load in children with autism," Menon said. The research is the first to demonstrate that in children with autism changes less, relative to rest, in response to a task than the brains of other children, he added.

"The findings may help researchers evaluate the effects of different autism therapies," said Kaustubh Supekar, PhD, a research associate and the other lead author of the study. "Therapies that increase the brain's flexibility at switching from rest to goal-directed behaviors may be a good target, for instance."

"We're making progress in identifying a brain basis of autism, and we're starting to get traction in pinpointing systems and signaling mechanisms that are not functioning properly," Menon said. "This is giving us a better handle both in thinking about treatment and in looking at change or plasticity in the ."

Explore further: Kids with autism outperformed others on math test, study found

Related Stories

Kids with autism outperformed others on math test, study found

August 16, 2013
(HealthDay)—Children with autism and average IQs consistently did better on math tests than non-autistic children in the same IQ range, according to a small new study.

Social symptoms in autistic children may be caused by hyper-connected neurons

November 7, 2013
The brains of children with autism show more connections than the brains of typically developing children do. What's more, the brains of individuals with the most severe social symptoms are also the most hyper-connected. ...

Hyperconnectivity found in brains of children with autism, study says

June 27, 2013
The brains of children with autism show higher-than-normal connectivity along many neural networks, a new study from the Stanford University School of Medicine has found.

Key brain 'networks' may differ in autism, study suggests

April 16, 2014
(HealthDay)—Differences in brain connectivity may help explain the social impairments common in those who have autism spectrum disorders, new research suggests.

Autism in children affects not only social abilities, but also broad range of sensory and motor skills

June 25, 2013
A group of investigators from San Diego State University's Brain Development Imaging Laboratory are shedding a new light on the effects of autism on the brain.

A single spray of oxytocin improves brain function in children with autism

December 2, 2013
A single dose of the hormone oxytocin, delivered via nasal spray, has been shown to enhance brain activity while processing social information in children with autism spectrum disorders, Yale School of Medicine researchers ...

Recommended for you

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Females with autism show greater difficulty with day-to-day tasks than male counterparts

July 14, 2017
Women and girls with autism may face greater challenges with real world planning, organization and other daily living skills, according to a study published in the journal Autism Research.

Researchers investigate possible link between carnitine deficiency and autism

July 13, 2017
Researchers are always looking for new clues to the causes of autism, with special emphasis on prevention or treatment. At Baylor College of Medicine, Dr. Arthur Beaudet has been following clinical and genetic clues in patients ...

How children look at mom's face is influenced by genetic factors and altered in autism

July 12, 2017
New research has uncovered compelling evidence that genetics plays a major role in how children look at the world and whether they have a preference for gazing at people's eyes and faces or at objects.

Oxytocin improves social abilities in some kids with autism, study finds

July 10, 2017
Children with autism showed improved social behavior when treated with oxytocin, a hormone linked to social abilities, according to a new study by researchers at the Stanford University School of Medicine. Children with low ...

Possible early diagnosis of autism spectrum disorder

June 29, 2017
Measuring a set of proteins in the blood may enable earlier diagnosis of autism spectrum disorder (ASD), according to a study from the Peter O'Donnell Jr. Brain Institute at UT Southwestern Medical Center.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.