Bacteria hijack plentiful iron supply source to flourish

July 9, 2014, Case Western Reserve University

In an era of increasing concern about the prevalence of antibiotic-resistant illness, Case Western Reserve researchers have identified a promising new pathway to disabling disease: blocking bacteria's access to iron in the body.

The scientists showed how bacterial siderophore, a small molecule, captures iron from two abundant supply sources to fan bacterial growth—as well as how the body launches a chemical counterassault against this infection process. Their findings appear in a recent edition of The Journal of Experimental Medicine.

"Bacterial siderophore will be an important target for therapeutics one day because it can be modified to prevent from acquiring iron, but at the same time, it's possible to preserve host access to iron," said senior author Laxminarayana Devireddy, DVM, PhD, assistant professor of pathology, Case Comprehensive Cancer Center.

Investigators knew from the outset that bacterial siderophore captures iron from the host mammal and transforms it so that bacteria can absorb and metabolize the mineral. In this investigation, Devireddy and his colleagues discovered that human mitochondria, which very closely resemble bacteria, possess their own iron-acquisition machinery—mitochondrial siderophore. Mammalian mitochondria are membrane-encased subunits within cells that generate most of the cell's energy, and like their bacteria counterparts, mammalian mitochondria have their own siderophore mechanism that seeks out, captures and delivers iron for utilization.

At the test tube level, investigators found that bacteria can feed on iron supplied by bacterial siderophore and mitochondrial siderophore. From this glut of iron, bacteria proliferate and make the host mammal very ill with an infection.

"It's like bacteria can use their own iron-capture machinery or the host's. It just doesn't matter," Devireddy said. "They are very good at utilizing siderophore from both bacterial and mammalian siderophore sources. That means that bacteria get the most iron."

Case Western Reserve researchers also demonstrated that the absence of mitochondrial siderophore in a mammal can enhance its ability to resist infection. When investigators exposed mice deficient for mitochondrial siderophore to systemic infection by E. coli, the animals resisted infection. The reason? E. coli bacteria had less iron to access from mitochondrial siderophore-deficient mice.

Additionally, mammals are not entirely defenseless from a bacteria raid on mitochondrial siderophore supplies. In another phase of their investigation, scientists found that normal mice secrete the protein lipocalin 24p3, which isolates bacterial siderophore and suppresses synthesis of mammalian siderophore.

"The action of lipocalin significantly reduced the mortality of the mice from the E. coli infection, and some mice actually recovered," Devireddy said. "That kind of delay in bacterial proliferation gave the immune system time to identify and then neutralize the microbe."

These findings highlight the potential of developing effective therapeutics to reverse .

"Any approach that would suppress either bacterial or mitochondrial siderophore and activate lipocalin-2 would likely slow infection, allowing the host's immune system to respond," Devireddy said. "Such novel approaches would also provide a much-needed alternative to treat those infections that have become antibiotics resistant."

Explore further: Doxorubicin-associated mitochondrial iron accumulation promotes cardiotoxicity

Related Stories

Doxorubicin-associated mitochondrial iron accumulation promotes cardiotoxicity

January 2, 2014
Doxorubicin is a widely used as a component of chemotherapy regimes; however, the use of doxorubicin is associated with severe cardiotoxicity. It is unclear exactly how doxorubicin promotes cardiotoxicity, but it has been ...

Recommended for you

This matrix delivers healing stem cells to injured elderly muscles

August 15, 2018
A car accident leaves an aging patient with severe muscle injuries that won't heal. Treatment with muscle stem cells from a donor might restore damaged tissue, but doctors are unable to deliver them effectively. A new method ...

Research shows it's possible to reverse damage caused by aging cells

August 15, 2018
What's the secret to aging well? University of Minnesota Medical School researchers have answered it- on a cellular level.

Male tobacco smokers have brain-wide reduction of CB1 receptors

August 15, 2018
Chronic, frequent tobacco smokers have a decreased number of cannabinoid CB1 receptors, the "pot receptor", when compared with non-smokers, reports a study in Biological Psychiatry.

Byproducts of 'junk DNA' implicated in cancer spread

August 14, 2018
The more scientists explore so-called "junk" DNA, the less the label seems to fit.

Doctors may be able to enlist a mysterious enzyme to stop internal bleeding

August 14, 2018
Blood platelets are like the sand bags of the body. Got a cut? Platelets pile in to clog the hole and stop the bleeding.

Artificial placenta created in the laboratory

August 14, 2018
In order to better understand important biological membranes, it is necessary to explore new methods. Researchers at Vienna University of Technology (Vienna) have succeeded in creating an artificial placental barrier on a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.