Biomarker predicts effectiveness of brain cancer treatment

July 1, 2014
Biomarker predicts effectiveness of brain cancer treatment
Clark C. Chen, M.D., Ph.D., neurosurgeon, UC San Diego Health System Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine have identified a new biomarker that predicts whether glioblastoma – the most common form of primary brain cancer – will respond to chemotherapy. The findings are published in the July print issue of Oncotarget.

"Every patient diagnosed with glioblastoma is treated with a chemotherapy called . About 15 percent of these derive long-lasting benefit," said Clark C. Chen, MD, PhD, vice-chairman of Academic Affairs, Division of Neurosurgery, UC San Diego School of Medicine and the study's principal investigator. "We need to identify which patients benefit from temozolomide and which another type of treatment. All therapies involve risk and the possibility of side-effects. Patients should not undergo therapies if there's no likelihood of benefit."

To pinpoint which patients were most likely respond to temozolomide, the researchers studied microRNAs that control the expression of a protein called methyl-guanine-methyl-transferase or MGMT. This protein dampens the cancer-killing effect of temozolomide. Tumors with high levels of MGMT are associated with a poor response to temozolomide therapy.

The scientists systematically tested every microRNA in the human genome to identify those that suppressed MGMT expression, with the expectation that high-levels of these microRNAs in the tumor would predict improved therapeutic response to temozolomide.

"We showed that a signature of the MGMT-regulating microRNAs predicted temozolomide response in a cohort of glioblastoma patients. Validation of these results should lead to diagnostic tools to enable us to determine which patients will benefit most from temozolomide therapy," said Chen.

In the study, the scientists also discovered that injection of the MGMT-regulating microRNAs into glioblastoma cells increased tumor sensitivity to temozolomide treatment.

"These findings establish the foundation for microRNAs-based therapies to increase the efficacy of temozolomide in patients," said lead author, Valya Ramakrishnan, PhD, postdoctoral researcher, UC San Diego School of Medicine.

Explore further: Progesterone could become tool versus brain cancer

Related Stories

Progesterone could become tool versus brain cancer

June 19, 2014
(Medical Xpress)—The hormone progesterone could become part of therapy against the most aggressive form of brain cancer. High concentrations of progesterone kill glioblastoma cells and inhibit tumor growth when the tumors ...

Study finds new targets for drugs to defeat aggressive brain tumor

December 14, 2012
University of Pittsburgh Cancer Institute (UPCI) researchers have identified over 125 genetic components in a chemotherapy-resistant, brain tumor-derived cell line, which could offer new hope for drug treatment to destroy ...

Revised glioblastoma classification should improve patient care

May 16, 2012
Radiation oncology researchers have revised the system used by doctors since the 1990s to determine the prognosis of people with glioblastoma, which is the most devastating of malignant brain tumors.

Gene change identifies brain cancer patients that respond better to treatment

May 31, 2011
New research proves that a change in a particular gene can identify which patients with a specific kind of brain cancer will respond better to treatment. Testing for the gene can distinguish patients with a more- or less-aggressive ...

Gene-modified stem cell transplant protects patients from toxic side effects of chemotherapy

May 9, 2012
For the first time, scientists at Fred Hutchinson Cancer Research Center have transplanted brain cancer patients' own gene-modified blood stem cells in order to protect their bone marrow against the toxic side effects of ...

Choice of seizure drug for brain tumor patients may affect survival

August 31, 2011
New research suggests brain tumor patients who take the seizure drug valproic acid on top of standard treatment may live longer than people who take other kinds of epilepsy medications to control seizures. The research is ...

Recommended for you

How a non-coding RNA encourages cancer growth and metastasis

August 21, 2017
A mechanism that pushes a certain gene to produce a non-coding form of RNA instead of its protein-coding alternative can promote the growth of cancer, report researchers at the Medical University of South Carolina (MUSC) ...

Spaser can detect, kill circulating tumor cells to prevent cancer metastases, study finds

August 21, 2017
A nanolaser known as the spaser can serve as a super-bright, water-soluble, biocompatible probe capable of finding metastasized cancer cells in the blood stream and then killing these cells, according to a new research study.

Comprehensive genomic analysis offers insights into causes of Wilms tumor development

August 21, 2017
A comprehensive genomic analysis of Wilms tumor - the most common kidney cancer in children - found genetic mutations involving a large number of genes that fall into two major categories. These categories involve cellular ...

Comparison of screening recommendations indicates annual mammography

August 21, 2017
When to initiate screening for breast cancer, how often to screen, and how long to screen are questions that continue to spark emotional debates. A new study compares the number of deaths that might be prevented as a result ...

Vitamin C may encourage blood cancer stem cells to die

August 17, 2017
Vitamin C may "tell" faulty stem cells in the bone marrow to mature and die normally, instead of multiplying to cause blood cancers. This is the finding of a study led by researchers from Perlmutter Cancer Center at NYU Langone ...

Outdoor light at night linked with increased breast cancer risk in women

August 17, 2017
Women who live in areas with higher levels of outdoor light at night may be at higher risk for breast cancer than those living in areas with lower levels, according to a large long-term study from Harvard T.H. Chan School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.