Cells' protective DNA linked to size of brain region vital for memory

July 16, 2014 by Jeff Norris, University of California, San Francisco

(Medical Xpress)—A brain region that is vital for memory and shrinks in Alzheimer's disease patients also is likely to be smaller in those whose white blood cells have shorter DNA-protecting end caps – called telomeres – according to a study by Stanford and UC San Francisco researchers published online July 14, 2014 in the journal JAMA Neurology.

If the findings are confirmed in larger studies, the work is likely to fuel research on ways to manipulate cells to prevent aging of the brain and other organs, the researchers said.

UCSF telomere experts and Stanford researchers who specialize in studies of the hippocampus and aging found the link for the first time in humans. Previously, researchers studying mice found that lengthening telomeres can reverse brain aging.

In the new study the researchers studied 47 cognitively and physically healthy women ranging in age from 49 to 66. Nineteen of the 47 carry a gene called APO E4, which is associated with increased Alzheimer's disease risk. The association between and the size of the hippocampus was greatest among women without the risky APO E4 gene—and for reasons that are unclear—was obscured in the women with APO E4.

According to Emily Jacobs, PhD, the lead author of the study, who analyzed the data as a UCSF postdoctoral fellow, "Our findings highlight how chromosomal aging is tied to broader aspects of physiological aging, in this case hippocampal volume. These data raise the possibility that leukocyte telomere length may provide an early marker of age-related neurodegeneration."

Previous studies have found that short telomere length in predicts cognitive decline, Jacobs said.

Jacobs, now an instructor of psychiatry at Harvard Medical School, led the analysis as a postdoctoral fellow in the laboratory of Elissa Epel, PhD, a professor in the department of psychiatry at UCSF who studies the role of psychological stress in telomere length and chronic disease.

Natalie Rasgon, MD, PhD, professor of psychiatry and behavioral sciences at Stanford, the director of the Stanford Center for Neuroscience in Women's Health and the principal investigator for the new study, leads ongoing research on brain aging, which incorporates non-invasive magnetic resonance imaging to measure .

While cautioning that this is a small study requiring replication, Rasgon said, "The results are very exciting and thought-provoking. It raises the possibility that we might be able to modulate telomere length to reduce vulnerability to dementia."

Elizabeth Blackburn, PhD, professor of biochemistry and biophysics at UCSF, who shared a Nobel Prize for her discoveries of how telomeres allow chromosomes to be copied in a complete way during cell divisions, and of how they protect chromosomes against degradation, is a study co-author. Jue Lin, PhD, an associate researcher who works in Blackburn's lab, also is a co-author.

Rasgon, Epel, Blackburn, Lin and colleagues intend to expand the current cross-sectional findings by monitoring telomere and hippocampus status over time.

"The main importance of all of these efforts is for the early detection of vulnerable populations who may go on to develop cognitive decline and dementia," Rasgon said.

According to Epel, "Blood telomere length is a reliable predictor of diseases of aging, and it appears to relate to aspects of brain aging as well. Studies of stress reduction and lifestyle interventions suggest telomere length may be malleable. But it is still a big question as to whether increasing telomere length over time will actually prevent cognitive decline or other aging-related conditions."

The study co-authors, noting that chronic exposure of cells to inflammatory and oxidizing molecules and to glucocorticoid hormones can accelerate telomere shortening and lead to hippocampal atrophy, said it will be important to study cellular mechanisms in more detail to better understand how changes in telomere length—as well as changes in the activity of a telomere-lengthening enzyme called telomerase – either reflect or drive -related .

Explore further: Longer telomeres linked to risk of brain cancer

More information: Jacobs EG, Epel ES, Lin J, Blackburn EH, Rasgon NL. "Relationship Between Leukocyte Telomere Length, Telomerase Activity, and Hippocampal Volume in Early Aging." JAMA Neurol. 2014;71(7):921-923. DOI: 10.1001/jamaneurol.2014.870.

Related Stories

Longer telomeres linked to risk of brain cancer

June 8, 2014
New genomic research led by UC San Francisco (UCSF) scientists reveals that two common gene variants that lead to longer telomeres, the caps on chromosome ends thought by many scientists to confer health by protecting cells ...

Accelerated biological aging, seen in women with Alzheimer's risk factor, blocked by hormone therapy

February 13, 2013
Healthy menopausal women carrying a well-known genetic risk factor for Alzheimer's disease showed measurable signs of accelerated biological aging, a new study has found.

Does depression contribute to the aging process?

February 21, 2012
Stress has numerous detrimental effects on the human body. Many of these effects are acutely felt by the sufferer, but many more go 'unseen', one of which is shortening of telomere length.

Telomere shortening affects muscular dystrophy gene

May 6, 2013
(Medical Xpress)—Facioscapulohumeral muscular dystrophy (FSHD) is a genetic disorder that causes the muscles of the upper body to waste away. It is unusual in that symptoms do not usually appear until sufferers are in their ...

Recommended for you

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

August 18, 2018
Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model ...

People are more honest when using a foreign tongue, research finds

August 17, 2018
New UChicago-led research suggests that someone who speaks in a foreign language is probably more credible than the average native speaker.

Critical role of DHA on foetal brain development revealed

August 17, 2018
Duke-NUS researchers have found evidence that a natural form of Docosahexaenoic Acid (DHA) made by the liver called Lyso-Phosphatidyl-Choline (LPC-DHA), is critical for normal foetal and infant brain development, and that ...

Automated detection of focal epileptic seizures in a sentinel area of the human brain

August 17, 2018
Patients with focal epilepsy that does not respond to medications badly need alternative treatments.

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018
Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.