Dual contrast agent to light up arterial health risks

July 14, 2014 by Ken Kingery
Jennifer West and Jeffrey Ashton in the laboratory

Two degrees plus two scan energies and one heavy metal equals a new way to detect dangerous plaques in the coronary arteries.

Potentially.

Jeffrey Ashton, a biomedical engineering graduate student in Duke University's MD-PhD program, has won an American Heart Association Fellowship to develop a new contrast agent for CT scans. Not only would the agent be able to detect buildup in arteries, but also reveal how likely the plaque is to rupture and cause a heart attack or stroke.

The prestigious fellowship, which comes with a two-year, $50,000 grant, is intended to help young researchers launch independent careers in cardiovascular and stroke research by obtaining significant scientific results under the supervision of a mentor.

Or in this case, two mentors. The research is made possible through a collaboration between Jennifer West, the Fitzpatrick Family University Professor of Engineering at Duke University, and Cristian Badea, a professor of radiology at Duke Medicine.

"CT scans are very effective for seeing where there's a pathology and how big it is," said Ashton. "But that information can't accurately predict which plaques pose an imminent risk to the patient."

A better predictor is the proteases secreted by advanced plaques. Previous research has shown that plaques nearing their tipping point pump out more of these specialized enzymes than typical tissue.

To find plaques and determine their chances of rupturing, the project will use a relatively new technology called dual-energy CT scanning. Aptly named, the technique conducts two scans simultaneously with x-rays of differing energies. This allows doctors to see multiple materials at the same time.

"If we see an atherosclerotic plaque with a normal CT scan, we could do a dual energy CT scan using this new contrast agent to determine the risk," said Ashton.

The first material the dual energies will light up is iodine, a contrast agent commonly used in CT scans. The second is . But the two won't be jumping into the pool alone; they'll be joined at the hip.

Ashton plans to connect the two elements using peptides that are easily broken by the proteases secreted by advanced plaques. As the iodine builds up in the plaque, the attached gold nanoparticles will either stay put or break free. The former indicates the plaque is in no danger of rupturing; the latter indicates a need for intervention.

"Working with Cristian has been great because, while we have done a lot of work in in the past, we have no expertise in CT scanning technology, and he is one of the world's leading experts in multi-modal CT imaging," said West. "By coming together, we've been able to translate some of the approaches we've used in the past from an optical imaging platform onto a CT platform, which enables many more types of clinical applications."

For his part, Ashton couldn't be happier with the situation.

"Even before I started my PhD, I knew I was interested in contrast agents, but I didn't think anyone at Duke was working with them," said Ashton. "But rotating through Professor West's and Professor Badea's labs, I found that both were interested in the intersection between CT imaging and nanoparticle contrast agent development. It's been great. I was lucky to find two labs with a need that I could fill, which also happened to be exactly what I was interested in."

Explore further: Study finds advanced CT scanners reduce patient radiation exposure

Related Stories

Study finds advanced CT scanners reduce patient radiation exposure

June 21, 2014
Computed tomography scans are an accepted standard of care for diagnosing heart and lung conditions. But clinicians worry that the growing use of CT scans could be placing patients at a higher lifetime risk of cancer from ...

Study shows link between HIV infection and coronary artery disease

March 31, 2014
Men with long-term HIV infections are at higher risk than uninfected men of developing plaque in their coronary arteries, regardless of their other risk factors for coronary artery disease, according to results of a study ...

CT scans don't interfere with cardiac rhythm devices

March 3, 2014
(HealthDay)—Cardiac rhythm management devices should not be a cause for delaying computed tomography (CT) imaging procedures, according to research published online Feb. 26 in the Journal of the American College of Cardiology.

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.